EnsembleOptimizer.__init__()   A
last analyzed

Complexity

Conditions 1

Size

Total Lines 27
Code Lines 26

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
eloc 26
dl 0
loc 27
rs 9.256
c 0
b 0
f 0
cc 1
nop 11

How to fix   Many Parameters   

Many Parameters

Methods with many parameters are not only hard to understand, but their parameters also often become inconsistent when you need more, or different data.

There are several approaches to avoid long parameter lists:

1
# Author: Simon Blanke
2
# Email: [email protected]
3
# License: MIT License
4
5
from typing import List, Dict, Literal, Union
6
7
from ..search import Search
8
from ..optimizers import EnsembleOptimizer as _EnsembleOptimizer
9
10
11
class EnsembleOptimizer(_EnsembleOptimizer, Search):
12
    def __init__(
13
        self,
14
        search_space: Dict[str, list],
15
        initialize: Dict[
16
            Literal["grid", "vertices", "random", "warm_start"],
17
            Union[int, list[dict]],
18
        ] = {"grid": 4, "random": 2, "vertices": 4},
19
        constraints: List[callable] = [],
20
        random_state: int = None,
21
        rand_rest_p: float = 0,
22
        nth_process: int = None,
23
        warm_start_smbo=None,
24
        max_sample_size: int = 10000000,
25
        sampling: Dict[Literal["random"], int] = {"random": 1000000},
26
        replacement: bool = True,
27
    ):
28
        super().__init__(
29
            search_space=search_space,
30
            initialize=initialize,
31
            constraints=constraints,
32
            random_state=random_state,
33
            rand_rest_p=rand_rest_p,
34
            nth_process=nth_process,
35
            warm_start_smbo=warm_start_smbo,
36
            max_sample_size=max_sample_size,
37
            sampling=sampling,
38
            replacement=replacement,
39
        )
40