| Total Complexity | 40 |
| Total Lines | 458 |
| Duplicated Lines | 4.37 % |
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like NiaPy.algorithms.basic.mke often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | # encoding=utf8 |
||
| 2 | # pylint: disable=mixed-indentation, trailing-whitespace, multiple-statements, attribute-defined-outside-init, logging-not-lazy, no-self-use, len-as-condition, singleton-comparison, arguments-differ, bad-continuation |
||
| 3 | import logging |
||
| 4 | from math import ceil |
||
| 5 | |||
| 6 | from numpy import apply_along_axis, vectorize, argmin, argmax, full, tril |
||
| 7 | |||
| 8 | from NiaPy.algorithms.algorithm import Algorithm, Individual, defaultIndividualInit, defaultNumPyInit |
||
| 9 | |||
| 10 | logging.basicConfig() |
||
| 11 | logger = logging.getLogger('NiaPy.algorithms.basic') |
||
| 12 | logger.setLevel('INFO') |
||
| 13 | |||
| 14 | __all__ = ['MonkeyKingEvolutionV1', 'MonkeyKingEvolutionV2', 'MonkeyKingEvolutionV3'] |
||
| 15 | |||
| 16 | class MkeSolution(Individual): |
||
| 17 | r"""Implementation of Monkey King Evolution individual. |
||
| 18 | |||
| 19 | Data: |
||
| 20 | 2018 |
||
| 21 | |||
| 22 | Authors: |
||
| 23 | Klemen Berkovič |
||
| 24 | |||
| 25 | License: |
||
| 26 | MIT |
||
| 27 | |||
| 28 | Attributes: |
||
| 29 | x_pb (array of (float or int)): Personal best position of Monkey particle. |
||
| 30 | f_pb (float): Personal best fitness/function value. |
||
| 31 | MonkeyKing (bool): Boolean value indicating if particle is Monkey King particle. |
||
| 32 | |||
| 33 | See Also: |
||
| 34 | * :class:`NiaPy.algorithms.Individual` |
||
| 35 | """ |
||
| 36 | def __init__(self, **kwargs): |
||
| 37 | r"""Initialize Monkey particle. |
||
| 38 | |||
| 39 | Args: |
||
| 40 | **kwargs: Additional arguments |
||
| 41 | |||
| 42 | See Also: |
||
| 43 | * :class:`NiaPy.algorithms.Individual.__init__()` |
||
| 44 | """ |
||
| 45 | Individual.__init__(self, **kwargs) |
||
| 46 | self.f_pb, self.x_pb = self.f, self.x |
||
| 47 | self.MonkeyKing = False |
||
| 48 | |||
| 49 | def uPersonalBest(self): |
||
| 50 | r"""Update presonal best position of particle.""" |
||
| 51 | if self.f < self.f_pb: self.x_pb, self.f_pb = self.x, self.f |
||
| 52 | |||
| 53 | class MonkeyKingEvolutionV1(Algorithm): |
||
| 54 | r"""Implementation of monkey king evolution algorithm version 1. |
||
| 55 | |||
| 56 | Algorithm: |
||
| 57 | Monkey King Evolution version 1 |
||
| 58 | |||
| 59 | Date: |
||
| 60 | 2018 |
||
| 61 | |||
| 62 | Authors: |
||
| 63 | Klemen Berkovič |
||
| 64 | |||
| 65 | License: |
||
| 66 | MIT |
||
| 67 | |||
| 68 | Reference URL: |
||
| 69 | https://www.sciencedirect.com/science/article/pii/S0950705116000198 |
||
| 70 | |||
| 71 | Reference paper: |
||
| 72 | Zhenyu Meng, Jeng-Shyang Pan, Monkey King Evolution: A new memetic evolutionary algorithm and its application in vehicle fuel consumption optimization, Knowledge-Based Systems, Volume 97, 2016, Pages 144-157, ISSN 0950-7051, https://doi.org/10.1016/j.knosys.2016.01.009. |
||
| 73 | |||
| 74 | Attributes: |
||
| 75 | Name (List[str]): List of strings representing algorithm names. |
||
| 76 | F (float): Scale factor for normal particles. |
||
| 77 | R (float): TODO. |
||
| 78 | C (int): Number of new particles generated by Monkey King particle. |
||
| 79 | FC (float): Scale factor for Monkey King particles. |
||
| 80 | |||
| 81 | See Also: |
||
| 82 | * :class:`NiaPy.algorithms.algorithm.Algorithm` |
||
| 83 | """ |
||
| 84 | Name = ['MonkeyKingEvolutionV1', 'MKEv1'] |
||
| 85 | |||
| 86 | @staticmethod |
||
| 87 | def algorithmInfo(): |
||
| 88 | r"""Get basic information of algorithm. |
||
| 89 | |||
| 90 | Returns: |
||
| 91 | str: Basic information. |
||
| 92 | |||
| 93 | See Also: |
||
| 94 | * :func:`NiaPy.algorithms.Algorithm.algorithmInfo` |
||
| 95 | """ |
||
| 96 | return r"""Zhenyu Meng, Jeng-Shyang Pan, Monkey King Evolution: A new memetic evolutionary algorithm and its application in vehicle fuel consumption optimization, Knowledge-Based Systems, Volume 97, 2016, Pages 144-157, ISSN 0950-7051, https://doi.org/10.1016/j.knosys.2016.01.009.""" |
||
| 97 | |||
| 98 | View Code Duplication | @staticmethod |
|
|
|
|||
| 99 | def typeParameters(): |
||
| 100 | r"""Get dictionary with functions for checking values of parameters. |
||
| 101 | |||
| 102 | Returns: |
||
| 103 | Dict[str, Callable]: |
||
| 104 | * F (Callable[[int], bool]) |
||
| 105 | * R (Callable[[Union[int, float]], bool]) |
||
| 106 | * C (Callable[[Union[int, float]], bool]) |
||
| 107 | * FC (Callable[[Union[int, float]], bool]) |
||
| 108 | """ |
||
| 109 | d = Algorithm.typeParameters() |
||
| 110 | d.update({ |
||
| 111 | 'NP': lambda x: isinstance(x, int) and x > 0, |
||
| 112 | 'F': lambda x: isinstance(x, (float, int)) and x > 0, |
||
| 113 | 'R': lambda x: isinstance(x, (float, int)) and x > 0, |
||
| 114 | 'C': lambda x: isinstance(x, int) and x > 0, |
||
| 115 | 'FC': lambda x: isinstance(x, (float, int)) and x > 0 |
||
| 116 | }) |
||
| 117 | return d |
||
| 118 | |||
| 119 | def setParameters(self, NP=40, F=0.7, R=0.3, C=3, FC=0.5, **ukwargs): |
||
| 120 | r"""Set Monkey King Evolution v1 algorithms static parameters. |
||
| 121 | |||
| 122 | Args: |
||
| 123 | NP (int): Population size. |
||
| 124 | F (float): Scale factor for normal particle. |
||
| 125 | R (float): Procentual value of now many new particle Monkey King particle creates. Value in rage [0, 1]. |
||
| 126 | C (int): Number of new particles generated by Monkey King particle. |
||
| 127 | FC (float): Scale factor for Monkey King particles. |
||
| 128 | **ukwargs (Dict[str, Any]): Additional arguments. |
||
| 129 | |||
| 130 | See Also: |
||
| 131 | * :func:`NiaPy.algorithms.algorithm.Algorithm.setParameters` |
||
| 132 | """ |
||
| 133 | Algorithm.setParameters(self, NP=NP, itype=ukwargs.pop('itype', MkeSolution), InitPopFunc=ukwargs.pop('InitPopFunc', defaultIndividualInit), **ukwargs) |
||
| 134 | self.F, self.R, self.C, self.FC = F, R, C, FC |
||
| 135 | if ukwargs: logger.info('Unused arguments: %s' % (ukwargs)) |
||
| 136 | |||
| 137 | def moveP(self, x, x_pb, x_b, task): |
||
| 138 | r"""Move normal particle in search space. |
||
| 139 | |||
| 140 | For moving particles algorithm uses next formula: |
||
| 141 | :math:`\mathbf{x_{pb} - \mathit{F} \odot \mathbf{r} \odot (\mathbf{x_b} - \mathbf{x})` |
||
| 142 | where |
||
| 143 | :math:`\mathbf{r}` is one dimension array with `D` components. Components in this vector are in range [0, 1]. |
||
| 144 | |||
| 145 | Args: |
||
| 146 | x (numpy.ndarray): Paticle position. |
||
| 147 | x_pb (numpy.ndarray): Particle best position. |
||
| 148 | x_b (numpy.ndarray): Best particle position. |
||
| 149 | task (Task): Optimization task. |
||
| 150 | |||
| 151 | Returns: |
||
| 152 | numpy.ndarray: Particle new position. |
||
| 153 | """ |
||
| 154 | return x_pb + self.F * self.rand(task.D) * (x_b - x) |
||
| 155 | |||
| 156 | def moveMK(self, x, task): |
||
| 157 | r"""Move Mokey King paticle. |
||
| 158 | |||
| 159 | For moving Monkey King particles algorithm uses next formula: |
||
| 160 | :math:`\mathbf{x} + \mathit{FC} \odot \mathbf{R} \odot \mathbf{x}` |
||
| 161 | where |
||
| 162 | :math:`\mathbf{R}` is two dimensional array with shape `{C * D, D}`. Componentes of this array are in range [0, 1] |
||
| 163 | |||
| 164 | Args: |
||
| 165 | x (numpy.ndarray): Monkey King patricle position. |
||
| 166 | task (Task): Optimization task. |
||
| 167 | |||
| 168 | Returns: |
||
| 169 | numpy.ndarray: New particles generated by Monkey King particle. |
||
| 170 | """ |
||
| 171 | return x + self.FC * self.rand([int(self.C * task.D), task.D]) * x |
||
| 172 | |||
| 173 | def movePartice(self, p, p_b, task): |
||
| 174 | r"""Move patricles. |
||
| 175 | |||
| 176 | Args: |
||
| 177 | p (MkeSolution): Monke particle. |
||
| 178 | p_b (MkeSolution): Population best particle. |
||
| 179 | task (Task): Optimization task. |
||
| 180 | """ |
||
| 181 | p.x = self.moveP(p.x, p.x_pb, p_b.x, task) |
||
| 182 | p.evaluate(task, rnd=self.Rand) |
||
| 183 | |||
| 184 | def moveMokeyKingPartice(self, p, task): |
||
| 185 | r"""Move Monky King Particles. |
||
| 186 | |||
| 187 | Args: |
||
| 188 | p (MkeSolution): Monkey King particle to apply this function on. |
||
| 189 | task (Task): Optimization task |
||
| 190 | """ |
||
| 191 | p.MonkeyKing = False |
||
| 192 | A = apply_along_axis(task.repair, 1, self.moveMK(p.x, task), self.Rand) |
||
| 193 | A_f = apply_along_axis(task.eval, 1, A) |
||
| 194 | ib = argmin(A_f) |
||
| 195 | p.x, p.f = A[ib], A_f[ib] |
||
| 196 | |||
| 197 | def movePopulation(self, pop, xb, task): |
||
| 198 | r"""Move population. |
||
| 199 | |||
| 200 | Args: |
||
| 201 | pop (numpy.ndarray[MkeSolution]): Current population. |
||
| 202 | xb (MkeSolution): Current best solution. |
||
| 203 | task (Task): Optimization task. |
||
| 204 | |||
| 205 | Returns: |
||
| 206 | numpy.ndarray[MkeSolution]: New particles. |
||
| 207 | """ |
||
| 208 | for p in pop: |
||
| 209 | if p.MonkeyKing: self.moveMokeyKingPartice(p, task) |
||
| 210 | else: self.movePartice(p, xb, task) |
||
| 211 | p.uPersonalBest() |
||
| 212 | return pop |
||
| 213 | |||
| 214 | def initPopulation(self, task): |
||
| 215 | r"""Init population. |
||
| 216 | |||
| 217 | Args: |
||
| 218 | task (Task): Optimization task |
||
| 219 | |||
| 220 | Returns: |
||
| 221 | Tuple(numpy.ndarray[MkeSolution], numpy.ndarray[float], Dict[str, Any]]: |
||
| 222 | 1. Initialized solutions |
||
| 223 | 2. Fitness/function values of solution |
||
| 224 | 3. Additional arguments |
||
| 225 | """ |
||
| 226 | pop, fpop, _ = Algorithm.initPopulation(self, task) |
||
| 227 | for i in self.Rand.choice(self.NP, int(self.R * len(pop)), replace=False): pop[i].MonkeyKing = True |
||
| 228 | return pop, fpop, {} |
||
| 229 | |||
| 230 | def runIteration(self, task, pop, fpop, xb, fxb, **dparams): |
||
| 231 | r"""Core function of Monkey King Evolution v1 algorithm. |
||
| 232 | |||
| 233 | Args: |
||
| 234 | task (Task): Optimization task |
||
| 235 | pop (numpy.ndarray[MkeSolution]): Current population |
||
| 236 | fpop (numpy.ndarray[float]): Current population fitness/function values |
||
| 237 | xb (MkeSolution): Current best solution. |
||
| 238 | fxb (float): Current best solutions function/fitness value. |
||
| 239 | **dparams (Dict[str, Any]): Additional arguments. |
||
| 240 | |||
| 241 | Returns: |
||
| 242 | Tuple(numpy.ndarray[MkeSolution], numpy.ndarray[float], Dict[str, Any]]: |
||
| 243 | 1. Initialized solutions. |
||
| 244 | 2. Fitness/function values of solution. |
||
| 245 | 3. Additional arguments. |
||
| 246 | """ |
||
| 247 | pop = self.movePopulation(pop, xb, task) |
||
| 248 | for i in self.Rand.choice(self.NP, int(self.R * len(pop)), replace=False): pop[i].MonkeyKing = True |
||
| 249 | return pop, [m.f for m in pop], {} |
||
| 250 | |||
| 251 | class MonkeyKingEvolutionV2(MonkeyKingEvolutionV1): |
||
| 252 | r"""Implementation of monkey king evolution algorithm version 2. |
||
| 253 | |||
| 254 | Algorithm: |
||
| 255 | Monkey King Evolution version 2 |
||
| 256 | |||
| 257 | Date: |
||
| 258 | 2018 |
||
| 259 | |||
| 260 | Authors: |
||
| 261 | Klemen Berkovič |
||
| 262 | |||
| 263 | License: |
||
| 264 | MIT |
||
| 265 | |||
| 266 | Reference URL: |
||
| 267 | https://www.sciencedirect.com/science/article/pii/S0950705116000198 |
||
| 268 | |||
| 269 | Reference paper: |
||
| 270 | Zhenyu Meng, Jeng-Shyang Pan, Monkey King Evolution: A new memetic evolutionary algorithm and its application in vehicle fuel consumption optimization, Knowledge-Based Systems, Volume 97, 2016, Pages 144-157, ISSN 0950-7051, https://doi.org/10.1016/j.knosys.2016.01.009. |
||
| 271 | |||
| 272 | Attributes: |
||
| 273 | Name (List[str]): List of strings representing algorithm names. |
||
| 274 | |||
| 275 | See Also: |
||
| 276 | * :class:`NiaPy.algorithms.basic.mke.MonkeyKingEvolutionV1` |
||
| 277 | """ |
||
| 278 | Name = ['MonkeyKingEvolutionV2', 'MKEv2'] |
||
| 279 | |||
| 280 | @staticmethod |
||
| 281 | def algorithmInfo(): |
||
| 282 | r"""Get basic information of algorithm. |
||
| 283 | |||
| 284 | Returns: |
||
| 285 | str: Basic information. |
||
| 286 | |||
| 287 | See Also: |
||
| 288 | * :func:`NiaPy.algorithms.Algorithm.algorithmInfo` |
||
| 289 | """ |
||
| 290 | return r"""Zhenyu Meng, Jeng-Shyang Pan, Monkey King Evolution: A new memetic evolutionary algorithm and its application in vehicle fuel consumption optimization, Knowledge-Based Systems, Volume 97, 2016, Pages 144-157, ISSN 0950-7051, https://doi.org/10.1016/j.knosys.2016.01.009.""" |
||
| 291 | |||
| 292 | def moveMK(self, x, dx, task): |
||
| 293 | r"""Move Monkey King particle. |
||
| 294 | |||
| 295 | For movment of particles algorithm uses next formula: |
||
| 296 | :math:`\mathbf{x} - \mathit{FC} \odot \mathbf{dx}` |
||
| 297 | |||
| 298 | Args: |
||
| 299 | x (numpy.ndarray): Particle to apply movment on. |
||
| 300 | dx (numpy.ndarray): Difference between to random paricles in population. |
||
| 301 | task (Task): Optimization task. |
||
| 302 | |||
| 303 | Returns: |
||
| 304 | numpy.ndarray: Moved particles. |
||
| 305 | """ |
||
| 306 | return x - self.FC * dx |
||
| 307 | |||
| 308 | def moveMokeyKingPartice(self, p, pop, task): |
||
| 309 | r"""Move Monkey King particles. |
||
| 310 | |||
| 311 | Args: |
||
| 312 | p (MkeSolution): Monkey King particle to move. |
||
| 313 | pop (numpy.ndarray[MkeSolution]): Current population. |
||
| 314 | task (Task): Optimization task. |
||
| 315 | """ |
||
| 316 | p.MonkeyKing = False |
||
| 317 | p_b, p_f = p.x, p.f |
||
| 318 | for _i in range(int(self.C * self.NP)): |
||
| 319 | r = self.Rand.choice(self.NP, 2, replace=False) |
||
| 320 | a = task.repair(self.moveMK(p.x, pop[r[0]].x - pop[r[1]].x, task), self.Rand) |
||
| 321 | a_f = task.eval(a) |
||
| 322 | if a_f < p_f: p_b, p_f = a, a_f |
||
| 323 | p.x, p.f = p_b, p_f |
||
| 324 | |||
| 325 | def movePopulation(self, pop, xb, task): |
||
| 326 | r"""Move population. |
||
| 327 | |||
| 328 | Args: |
||
| 329 | pop (numpy.ndarray[MkeSolution]): Current population. |
||
| 330 | xb (MkeSolution): Current best solution. |
||
| 331 | task (Task): Optimization task. |
||
| 332 | |||
| 333 | Returns: |
||
| 334 | numpy.ndarray[MkeSolution]: Moved population. |
||
| 335 | """ |
||
| 336 | for p in pop: |
||
| 337 | if p.MonkeyKing: self.moveMokeyKingPartice(p, pop, task) |
||
| 338 | else: self.movePartice(p, xb, task) |
||
| 339 | p.uPersonalBest() |
||
| 340 | return pop |
||
| 341 | |||
| 342 | class MonkeyKingEvolutionV3(MonkeyKingEvolutionV1): |
||
| 343 | r"""Implementation of monkey king evolution algorithm version 3. |
||
| 344 | |||
| 345 | Algorithm: |
||
| 346 | Monkey King Evolution version 3 |
||
| 347 | |||
| 348 | Date: |
||
| 349 | 2018 |
||
| 350 | |||
| 351 | Authors: |
||
| 352 | Klemen Berkovič |
||
| 353 | |||
| 354 | License: |
||
| 355 | MIT |
||
| 356 | |||
| 357 | Reference URL: |
||
| 358 | https://www.sciencedirect.com/science/article/pii/S0950705116000198 |
||
| 359 | |||
| 360 | Reference paper: |
||
| 361 | Zhenyu Meng, Jeng-Shyang Pan, Monkey King Evolution: A new memetic evolutionary algorithm and its application in vehicle fuel consumption optimization, Knowledge-Based Systems, Volume 97, 2016, Pages 144-157, ISSN 0950-7051, https://doi.org/10.1016/j.knosys.2016.01.009. |
||
| 362 | |||
| 363 | Attributes: |
||
| 364 | Name (List[str]): List of strings that represent algorithm names. |
||
| 365 | |||
| 366 | See Also: |
||
| 367 | * :class:`NiaPy.algorithms.basic.mke.MonkeyKingEvolutionV1` |
||
| 368 | """ |
||
| 369 | Name = ['MonkeyKingEvolutionV3', 'MKEv3'] |
||
| 370 | |||
| 371 | @staticmethod |
||
| 372 | def algorithmInfo(): |
||
| 373 | r"""Get basic information of algorithm. |
||
| 374 | |||
| 375 | Returns: |
||
| 376 | str: Basic information. |
||
| 377 | |||
| 378 | See Also: |
||
| 379 | * :func:`NiaPy.algorithms.Algorithm.algorithmInfo` |
||
| 380 | """ |
||
| 381 | return r"""Zhenyu Meng, Jeng-Shyang Pan, Monkey King Evolution: A new memetic evolutionary algorithm and its application in vehicle fuel consumption optimization, Knowledge-Based Systems, Volume 97, 2016, Pages 144-157, ISSN 0950-7051, https://doi.org/10.1016/j.knosys.2016.01.009.""" |
||
| 382 | |||
| 383 | def setParameters(self, **ukwargs): |
||
| 384 | r"""Set core parameters of MonkeyKingEvolutionV3 algorithm. |
||
| 385 | |||
| 386 | Args: |
||
| 387 | **ukwargs (Dict[str, Any]): Additional arguments. |
||
| 388 | |||
| 389 | See Also: |
||
| 390 | * :func:`NiaPy.algorithms.basic.MonkeyKingEvolutionV1.setParameters` |
||
| 391 | """ |
||
| 392 | MonkeyKingEvolutionV1.setParameters(self, itype=ukwargs.pop('itype', None), InitPopFunc=ukwargs.pop('InitPopFunc', defaultNumPyInit), **ukwargs) |
||
| 393 | |||
| 394 | def neg(self, x): |
||
| 395 | r"""Transform function. |
||
| 396 | |||
| 397 | Args: |
||
| 398 | x (Union[int, float]): Sould be 0 or 1. |
||
| 399 | |||
| 400 | Returns: |
||
| 401 | float: If 0 thet 1 else 1 then 0. |
||
| 402 | """ |
||
| 403 | return 0.0 if x == 1.0 else 1.0 |
||
| 404 | |||
| 405 | def initPopulation(self, task): |
||
| 406 | r"""Initialize the population. |
||
| 407 | |||
| 408 | Args: |
||
| 409 | task (Task): Optimization task. |
||
| 410 | |||
| 411 | Returns: |
||
| 412 | Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: |
||
| 413 | 1. Initialized population. |
||
| 414 | 2. Initialized population function/fitness values. |
||
| 415 | 3. Additional arguments: |
||
| 416 | * k (int): TODO. |
||
| 417 | * c (int): TODO. |
||
| 418 | |||
| 419 | See Also: |
||
| 420 | * :func:`NiaPy.algorithms.algorithm.Algorithm.initPopulation` |
||
| 421 | """ |
||
| 422 | X, X_f, d = Algorithm.initPopulation(self, task) |
||
| 423 | k, c = int(ceil(self.NP / task.D)), int(ceil(self.C * task.D)) |
||
| 424 | d.update({'k': k, 'c': c}) |
||
| 425 | return X, X_f, d |
||
| 426 | |||
| 427 | def runIteration(self, task, X, X_f, xb, fxb, k, c, **dparams): |
||
| 428 | r"""Core funciton of Monkey King Evolution v3 algorithm. |
||
| 429 | |||
| 430 | Args: |
||
| 431 | task (Task): Optimization task |
||
| 432 | X (numpy.ndarray): Current population |
||
| 433 | X_f (numpy.ndarray[float]): Current population fitness/function values |
||
| 434 | xb (numpy.ndarray): Current best individual |
||
| 435 | fxb (float): Current best individual function/fitness value |
||
| 436 | k (int): TODO |
||
| 437 | c (int: TODO |
||
| 438 | **dparams: Additional arguments |
||
| 439 | |||
| 440 | Returns: |
||
| 441 | Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: |
||
| 442 | 1. Initialized population. |
||
| 443 | 2. Initialized population function/fitness values. |
||
| 444 | 3. Additional arguments: |
||
| 445 | * k (int): TODO. |
||
| 446 | * c (int): TODO. |
||
| 447 | """ |
||
| 448 | X_gb = apply_along_axis(task.repair, 1, xb + self.FC * X[self.Rand.choice(len(X), c)] - X[self.Rand.choice(len(X), c)], self.Rand) |
||
| 449 | X_gb_f = apply_along_axis(task.eval, 1, X_gb) |
||
| 450 | M = full([self.NP, task.D], 1.0) |
||
| 451 | for i in range(k): M[i * task.D:(i + 1) * task.D] = tril(M[i * task.D:(i + 1) * task.D]) |
||
| 452 | for i in range(self.NP): self.Rand.shuffle(M[i]) |
||
| 453 | X = apply_along_axis(task.repair, 1, M * X + vectorize(self.neg)(M) * xb, self.Rand) |
||
| 454 | X_f = apply_along_axis(task.eval, 1, X) |
||
| 455 | iw, ib_gb = argmax(X_f), argmin(X_gb_f) |
||
| 456 | if X_gb_f[ib_gb] <= X_f[iw]: X[iw], X_f[iw] = X_gb[ib_gb], X_gb_f[ib_gb] |
||
| 457 | return X, X_f, {'k': k, 'c': c} |
||
| 458 | |||
| 460 |