|
1
|
|
|
# encoding=utf8 |
|
2
|
|
|
# pylint: disable=mixed-indentation, trailing-whitespace, multiple-statements, attribute-defined-outside-init, logging-not-lazy, no-self-use, len-as-condition, singleton-comparison, arguments-differ, bad-continuation |
|
3
|
|
|
import logging |
|
4
|
|
|
from math import ceil |
|
5
|
|
|
|
|
6
|
|
|
from numpy import apply_along_axis, vectorize, argmin, argmax, full, tril |
|
7
|
|
|
|
|
8
|
|
|
from NiaPy.algorithms.algorithm import Algorithm, Individual, defaultIndividualInit, defaultNumPyInit |
|
9
|
|
|
|
|
10
|
|
|
logging.basicConfig() |
|
11
|
|
|
logger = logging.getLogger('NiaPy.algorithms.basic') |
|
12
|
|
|
logger.setLevel('INFO') |
|
13
|
|
|
|
|
14
|
|
|
__all__ = ['MonkeyKingEvolutionV1', 'MonkeyKingEvolutionV2', 'MonkeyKingEvolutionV3'] |
|
15
|
|
|
|
|
16
|
|
|
class MkeSolution(Individual): |
|
17
|
|
|
r"""Implementation of Monkey King Evolution individual. |
|
18
|
|
|
|
|
19
|
|
|
Data: |
|
20
|
|
|
2018 |
|
21
|
|
|
|
|
22
|
|
|
Authors: |
|
23
|
|
|
Klemen Berkovič |
|
24
|
|
|
|
|
25
|
|
|
License: |
|
26
|
|
|
MIT |
|
27
|
|
|
|
|
28
|
|
|
Attributes: |
|
29
|
|
|
x_pb (array of (float or int)): Personal best position of Monkey particle. |
|
30
|
|
|
f_pb (float): Personal best fitness/function value. |
|
31
|
|
|
MonkeyKing (bool): Boolean value indicating if particle is Monkey King particle. |
|
32
|
|
|
|
|
33
|
|
|
See Also: |
|
34
|
|
|
* :class:`NiaPy.algorithms.Individual` |
|
35
|
|
|
""" |
|
36
|
|
|
def __init__(self, **kwargs): |
|
37
|
|
|
r"""Initialize Monkey particle. |
|
38
|
|
|
|
|
39
|
|
|
Args: |
|
40
|
|
|
**kwargs: Additional arguments |
|
41
|
|
|
|
|
42
|
|
|
See Also: |
|
43
|
|
|
* :class:`NiaPy.algorithms.Individual.__init__()` |
|
44
|
|
|
""" |
|
45
|
|
|
Individual.__init__(self, **kwargs) |
|
46
|
|
|
self.f_pb, self.x_pb = self.f, self.x |
|
47
|
|
|
self.MonkeyKing = False |
|
48
|
|
|
|
|
49
|
|
|
def uPersonalBest(self): |
|
50
|
|
|
r"""Update presonal best position of particle.""" |
|
51
|
|
|
if self.f < self.f_pb: self.x_pb, self.f_pb = self.x, self.f |
|
52
|
|
|
|
|
53
|
|
|
class MonkeyKingEvolutionV1(Algorithm): |
|
54
|
|
|
r"""Implementation of monkey king evolution algorithm version 1. |
|
55
|
|
|
|
|
56
|
|
|
Algorithm: |
|
57
|
|
|
Monkey King Evolution version 1 |
|
58
|
|
|
|
|
59
|
|
|
Date: |
|
60
|
|
|
2018 |
|
61
|
|
|
|
|
62
|
|
|
Authors: |
|
63
|
|
|
Klemen Berkovič |
|
64
|
|
|
|
|
65
|
|
|
License: |
|
66
|
|
|
MIT |
|
67
|
|
|
|
|
68
|
|
|
Reference URL: |
|
69
|
|
|
https://www.sciencedirect.com/science/article/pii/S0950705116000198 |
|
70
|
|
|
|
|
71
|
|
|
Reference paper: |
|
72
|
|
|
Zhenyu Meng, Jeng-Shyang Pan, Monkey King Evolution: A new memetic evolutionary algorithm and its application in vehicle fuel consumption optimization, Knowledge-Based Systems, Volume 97, 2016, Pages 144-157, ISSN 0950-7051, https://doi.org/10.1016/j.knosys.2016.01.009. |
|
73
|
|
|
|
|
74
|
|
|
Attributes: |
|
75
|
|
|
Name (List[str]): List of strings representing algorithm names. |
|
76
|
|
|
F (float): Scale factor for normal particles. |
|
77
|
|
|
R (float): TODO. |
|
78
|
|
|
C (int): Number of new particles generated by Monkey King particle. |
|
79
|
|
|
FC (float): Scale factor for Monkey King particles. |
|
80
|
|
|
|
|
81
|
|
|
See Also: |
|
82
|
|
|
* :class:`NiaPy.algorithms.algorithm.Algorithm` |
|
83
|
|
|
""" |
|
84
|
|
|
Name = ['MonkeyKingEvolutionV1', 'MKEv1'] |
|
85
|
|
|
|
|
86
|
|
|
@staticmethod |
|
87
|
|
|
def algorithmInfo(): |
|
88
|
|
|
r"""Get basic information of algorithm. |
|
89
|
|
|
|
|
90
|
|
|
Returns: |
|
91
|
|
|
str: Basic information. |
|
92
|
|
|
|
|
93
|
|
|
See Also: |
|
94
|
|
|
* :func:`NiaPy.algorithms.Algorithm.algorithmInfo` |
|
95
|
|
|
""" |
|
96
|
|
|
return r"""Zhenyu Meng, Jeng-Shyang Pan, Monkey King Evolution: A new memetic evolutionary algorithm and its application in vehicle fuel consumption optimization, Knowledge-Based Systems, Volume 97, 2016, Pages 144-157, ISSN 0950-7051, https://doi.org/10.1016/j.knosys.2016.01.009.""" |
|
97
|
|
|
|
|
98
|
|
View Code Duplication |
@staticmethod |
|
|
|
|
|
|
99
|
|
|
def typeParameters(): |
|
100
|
|
|
r"""Get dictionary with functions for checking values of parameters. |
|
101
|
|
|
|
|
102
|
|
|
Returns: |
|
103
|
|
|
Dict[str, Callable]: |
|
104
|
|
|
* F (Callable[[int], bool]) |
|
105
|
|
|
* R (Callable[[Union[int, float]], bool]) |
|
106
|
|
|
* C (Callable[[Union[int, float]], bool]) |
|
107
|
|
|
* FC (Callable[[Union[int, float]], bool]) |
|
108
|
|
|
""" |
|
109
|
|
|
d = Algorithm.typeParameters() |
|
110
|
|
|
d.update({ |
|
111
|
|
|
'NP': lambda x: isinstance(x, int) and x > 0, |
|
112
|
|
|
'F': lambda x: isinstance(x, (float, int)) and x > 0, |
|
113
|
|
|
'R': lambda x: isinstance(x, (float, int)) and x > 0, |
|
114
|
|
|
'C': lambda x: isinstance(x, int) and x > 0, |
|
115
|
|
|
'FC': lambda x: isinstance(x, (float, int)) and x > 0 |
|
116
|
|
|
}) |
|
117
|
|
|
return d |
|
118
|
|
|
|
|
119
|
|
|
def setParameters(self, NP=40, F=0.7, R=0.3, C=3, FC=0.5, **ukwargs): |
|
120
|
|
|
r"""Set Monkey King Evolution v1 algorithms static parameters. |
|
121
|
|
|
|
|
122
|
|
|
Args: |
|
123
|
|
|
NP (int): Population size. |
|
124
|
|
|
F (float): Scale factor for normal particle. |
|
125
|
|
|
R (float): Procentual value of now many new particle Monkey King particle creates. Value in rage [0, 1]. |
|
126
|
|
|
C (int): Number of new particles generated by Monkey King particle. |
|
127
|
|
|
FC (float): Scale factor for Monkey King particles. |
|
128
|
|
|
**ukwargs (Dict[str, Any]): Additional arguments. |
|
129
|
|
|
|
|
130
|
|
|
See Also: |
|
131
|
|
|
* :func:`NiaPy.algorithms.algorithm.Algorithm.setParameters` |
|
132
|
|
|
""" |
|
133
|
|
|
Algorithm.setParameters(self, NP=NP, itype=ukwargs.pop('itype', MkeSolution), InitPopFunc=ukwargs.pop('InitPopFunc', defaultIndividualInit), **ukwargs) |
|
134
|
|
|
self.F, self.R, self.C, self.FC = F, R, C, FC |
|
135
|
|
|
if ukwargs: logger.info('Unused arguments: %s' % (ukwargs)) |
|
136
|
|
|
|
|
137
|
|
|
def moveP(self, x, x_pb, x_b, task): |
|
138
|
|
|
r"""Move normal particle in search space. |
|
139
|
|
|
|
|
140
|
|
|
For moving particles algorithm uses next formula: |
|
141
|
|
|
:math:`\mathbf{x_{pb} - \mathit{F} \odot \mathbf{r} \odot (\mathbf{x_b} - \mathbf{x})` |
|
142
|
|
|
where |
|
143
|
|
|
:math:`\mathbf{r}` is one dimension array with `D` components. Components in this vector are in range [0, 1]. |
|
144
|
|
|
|
|
145
|
|
|
Args: |
|
146
|
|
|
x (numpy.ndarray): Paticle position. |
|
147
|
|
|
x_pb (numpy.ndarray): Particle best position. |
|
148
|
|
|
x_b (numpy.ndarray): Best particle position. |
|
149
|
|
|
task (Task): Optimization task. |
|
150
|
|
|
|
|
151
|
|
|
Returns: |
|
152
|
|
|
numpy.ndarray: Particle new position. |
|
153
|
|
|
""" |
|
154
|
|
|
return x_pb + self.F * self.rand(task.D) * (x_b - x) |
|
155
|
|
|
|
|
156
|
|
|
def moveMK(self, x, task): |
|
157
|
|
|
r"""Move Mokey King paticle. |
|
158
|
|
|
|
|
159
|
|
|
For moving Monkey King particles algorithm uses next formula: |
|
160
|
|
|
:math:`\mathbf{x} + \mathit{FC} \odot \mathbf{R} \odot \mathbf{x}` |
|
161
|
|
|
where |
|
162
|
|
|
:math:`\mathbf{R}` is two dimensional array with shape `{C * D, D}`. Componentes of this array are in range [0, 1] |
|
163
|
|
|
|
|
164
|
|
|
Args: |
|
165
|
|
|
x (numpy.ndarray): Monkey King patricle position. |
|
166
|
|
|
task (Task): Optimization task. |
|
167
|
|
|
|
|
168
|
|
|
Returns: |
|
169
|
|
|
numpy.ndarray: New particles generated by Monkey King particle. |
|
170
|
|
|
""" |
|
171
|
|
|
return x + self.FC * self.rand([int(self.C * task.D), task.D]) * x |
|
172
|
|
|
|
|
173
|
|
|
def movePartice(self, p, p_b, task): |
|
174
|
|
|
r"""Move patricles. |
|
175
|
|
|
|
|
176
|
|
|
Args: |
|
177
|
|
|
p (MkeSolution): Monke particle. |
|
178
|
|
|
p_b (MkeSolution): Population best particle. |
|
179
|
|
|
task (Task): Optimization task. |
|
180
|
|
|
""" |
|
181
|
|
|
p.x = self.moveP(p.x, p.x_pb, p_b.x, task) |
|
182
|
|
|
p.evaluate(task, rnd=self.Rand) |
|
183
|
|
|
|
|
184
|
|
|
def moveMokeyKingPartice(self, p, task): |
|
185
|
|
|
r"""Move Monky King Particles. |
|
186
|
|
|
|
|
187
|
|
|
Args: |
|
188
|
|
|
p (MkeSolution): Monkey King particle to apply this function on. |
|
189
|
|
|
task (Task): Optimization task |
|
190
|
|
|
""" |
|
191
|
|
|
p.MonkeyKing = False |
|
192
|
|
|
A = apply_along_axis(task.repair, 1, self.moveMK(p.x, task), self.Rand) |
|
193
|
|
|
A_f = apply_along_axis(task.eval, 1, A) |
|
194
|
|
|
ib = argmin(A_f) |
|
195
|
|
|
p.x, p.f = A[ib], A_f[ib] |
|
196
|
|
|
|
|
197
|
|
|
def movePopulation(self, pop, xb, task): |
|
198
|
|
|
r"""Move population. |
|
199
|
|
|
|
|
200
|
|
|
Args: |
|
201
|
|
|
pop (numpy.ndarray[MkeSolution]): Current population. |
|
202
|
|
|
xb (MkeSolution): Current best solution. |
|
203
|
|
|
task (Task): Optimization task. |
|
204
|
|
|
|
|
205
|
|
|
Returns: |
|
206
|
|
|
numpy.ndarray[MkeSolution]: New particles. |
|
207
|
|
|
""" |
|
208
|
|
|
for p in pop: |
|
209
|
|
|
if p.MonkeyKing: self.moveMokeyKingPartice(p, task) |
|
210
|
|
|
else: self.movePartice(p, xb, task) |
|
211
|
|
|
p.uPersonalBest() |
|
212
|
|
|
return pop |
|
213
|
|
|
|
|
214
|
|
|
def initPopulation(self, task): |
|
215
|
|
|
r"""Init population. |
|
216
|
|
|
|
|
217
|
|
|
Args: |
|
218
|
|
|
task (Task): Optimization task |
|
219
|
|
|
|
|
220
|
|
|
Returns: |
|
221
|
|
|
Tuple(numpy.ndarray[MkeSolution], numpy.ndarray[float], Dict[str, Any]]: |
|
222
|
|
|
1. Initialized solutions |
|
223
|
|
|
2. Fitness/function values of solution |
|
224
|
|
|
3. Additional arguments |
|
225
|
|
|
""" |
|
226
|
|
|
pop, fpop, _ = Algorithm.initPopulation(self, task) |
|
227
|
|
|
for i in self.Rand.choice(self.NP, int(self.R * len(pop)), replace=False): pop[i].MonkeyKing = True |
|
228
|
|
|
return pop, fpop, {} |
|
229
|
|
|
|
|
230
|
|
|
def runIteration(self, task, pop, fpop, xb, fxb, **dparams): |
|
231
|
|
|
r"""Core function of Monkey King Evolution v1 algorithm. |
|
232
|
|
|
|
|
233
|
|
|
Args: |
|
234
|
|
|
task (Task): Optimization task |
|
235
|
|
|
pop (numpy.ndarray[MkeSolution]): Current population |
|
236
|
|
|
fpop (numpy.ndarray[float]): Current population fitness/function values |
|
237
|
|
|
xb (MkeSolution): Current best solution. |
|
238
|
|
|
fxb (float): Current best solutions function/fitness value. |
|
239
|
|
|
**dparams (Dict[str, Any]): Additional arguments. |
|
240
|
|
|
|
|
241
|
|
|
Returns: |
|
242
|
|
|
Tuple(numpy.ndarray[MkeSolution], numpy.ndarray[float], Dict[str, Any]]: |
|
243
|
|
|
1. Initialized solutions. |
|
244
|
|
|
2. Fitness/function values of solution. |
|
245
|
|
|
3. Additional arguments. |
|
246
|
|
|
""" |
|
247
|
|
|
pop = self.movePopulation(pop, xb, task) |
|
248
|
|
|
for i in self.Rand.choice(self.NP, int(self.R * len(pop)), replace=False): pop[i].MonkeyKing = True |
|
249
|
|
|
return pop, [m.f for m in pop], {} |
|
250
|
|
|
|
|
251
|
|
|
class MonkeyKingEvolutionV2(MonkeyKingEvolutionV1): |
|
252
|
|
|
r"""Implementation of monkey king evolution algorithm version 2. |
|
253
|
|
|
|
|
254
|
|
|
Algorithm: |
|
255
|
|
|
Monkey King Evolution version 2 |
|
256
|
|
|
|
|
257
|
|
|
Date: |
|
258
|
|
|
2018 |
|
259
|
|
|
|
|
260
|
|
|
Authors: |
|
261
|
|
|
Klemen Berkovič |
|
262
|
|
|
|
|
263
|
|
|
License: |
|
264
|
|
|
MIT |
|
265
|
|
|
|
|
266
|
|
|
Reference URL: |
|
267
|
|
|
https://www.sciencedirect.com/science/article/pii/S0950705116000198 |
|
268
|
|
|
|
|
269
|
|
|
Reference paper: |
|
270
|
|
|
Zhenyu Meng, Jeng-Shyang Pan, Monkey King Evolution: A new memetic evolutionary algorithm and its application in vehicle fuel consumption optimization, Knowledge-Based Systems, Volume 97, 2016, Pages 144-157, ISSN 0950-7051, https://doi.org/10.1016/j.knosys.2016.01.009. |
|
271
|
|
|
|
|
272
|
|
|
Attributes: |
|
273
|
|
|
Name (List[str]): List of strings representing algorithm names. |
|
274
|
|
|
|
|
275
|
|
|
See Also: |
|
276
|
|
|
* :class:`NiaPy.algorithms.basic.mke.MonkeyKingEvolutionV1` |
|
277
|
|
|
""" |
|
278
|
|
|
Name = ['MonkeyKingEvolutionV2', 'MKEv2'] |
|
279
|
|
|
|
|
280
|
|
|
@staticmethod |
|
281
|
|
|
def algorithmInfo(): |
|
282
|
|
|
r"""Get basic information of algorithm. |
|
283
|
|
|
|
|
284
|
|
|
Returns: |
|
285
|
|
|
str: Basic information. |
|
286
|
|
|
|
|
287
|
|
|
See Also: |
|
288
|
|
|
* :func:`NiaPy.algorithms.Algorithm.algorithmInfo` |
|
289
|
|
|
""" |
|
290
|
|
|
return r"""Zhenyu Meng, Jeng-Shyang Pan, Monkey King Evolution: A new memetic evolutionary algorithm and its application in vehicle fuel consumption optimization, Knowledge-Based Systems, Volume 97, 2016, Pages 144-157, ISSN 0950-7051, https://doi.org/10.1016/j.knosys.2016.01.009.""" |
|
291
|
|
|
|
|
292
|
|
|
def moveMK(self, x, dx, task): |
|
293
|
|
|
r"""Move Monkey King particle. |
|
294
|
|
|
|
|
295
|
|
|
For movment of particles algorithm uses next formula: |
|
296
|
|
|
:math:`\mathbf{x} - \mathit{FC} \odot \mathbf{dx}` |
|
297
|
|
|
|
|
298
|
|
|
Args: |
|
299
|
|
|
x (numpy.ndarray): Particle to apply movment on. |
|
300
|
|
|
dx (numpy.ndarray): Difference between to random paricles in population. |
|
301
|
|
|
task (Task): Optimization task. |
|
302
|
|
|
|
|
303
|
|
|
Returns: |
|
304
|
|
|
numpy.ndarray: Moved particles. |
|
305
|
|
|
""" |
|
306
|
|
|
return x - self.FC * dx |
|
307
|
|
|
|
|
308
|
|
|
def moveMokeyKingPartice(self, p, pop, task): |
|
309
|
|
|
r"""Move Monkey King particles. |
|
310
|
|
|
|
|
311
|
|
|
Args: |
|
312
|
|
|
p (MkeSolution): Monkey King particle to move. |
|
313
|
|
|
pop (numpy.ndarray[MkeSolution]): Current population. |
|
314
|
|
|
task (Task): Optimization task. |
|
315
|
|
|
""" |
|
316
|
|
|
p.MonkeyKing = False |
|
317
|
|
|
p_b, p_f = p.x, p.f |
|
318
|
|
|
for _i in range(int(self.C * self.NP)): |
|
319
|
|
|
r = self.Rand.choice(self.NP, 2, replace=False) |
|
320
|
|
|
a = task.repair(self.moveMK(p.x, pop[r[0]].x - pop[r[1]].x, task), self.Rand) |
|
321
|
|
|
a_f = task.eval(a) |
|
322
|
|
|
if a_f < p_f: p_b, p_f = a, a_f |
|
323
|
|
|
p.x, p.f = p_b, p_f |
|
324
|
|
|
|
|
325
|
|
|
def movePopulation(self, pop, xb, task): |
|
326
|
|
|
r"""Move population. |
|
327
|
|
|
|
|
328
|
|
|
Args: |
|
329
|
|
|
pop (numpy.ndarray[MkeSolution]): Current population. |
|
330
|
|
|
xb (MkeSolution): Current best solution. |
|
331
|
|
|
task (Task): Optimization task. |
|
332
|
|
|
|
|
333
|
|
|
Returns: |
|
334
|
|
|
numpy.ndarray[MkeSolution]: Moved population. |
|
335
|
|
|
""" |
|
336
|
|
|
for p in pop: |
|
337
|
|
|
if p.MonkeyKing: self.moveMokeyKingPartice(p, pop, task) |
|
338
|
|
|
else: self.movePartice(p, xb, task) |
|
339
|
|
|
p.uPersonalBest() |
|
340
|
|
|
return pop |
|
341
|
|
|
|
|
342
|
|
|
class MonkeyKingEvolutionV3(MonkeyKingEvolutionV1): |
|
343
|
|
|
r"""Implementation of monkey king evolution algorithm version 3. |
|
344
|
|
|
|
|
345
|
|
|
Algorithm: |
|
346
|
|
|
Monkey King Evolution version 3 |
|
347
|
|
|
|
|
348
|
|
|
Date: |
|
349
|
|
|
2018 |
|
350
|
|
|
|
|
351
|
|
|
Authors: |
|
352
|
|
|
Klemen Berkovič |
|
353
|
|
|
|
|
354
|
|
|
License: |
|
355
|
|
|
MIT |
|
356
|
|
|
|
|
357
|
|
|
Reference URL: |
|
358
|
|
|
https://www.sciencedirect.com/science/article/pii/S0950705116000198 |
|
359
|
|
|
|
|
360
|
|
|
Reference paper: |
|
361
|
|
|
Zhenyu Meng, Jeng-Shyang Pan, Monkey King Evolution: A new memetic evolutionary algorithm and its application in vehicle fuel consumption optimization, Knowledge-Based Systems, Volume 97, 2016, Pages 144-157, ISSN 0950-7051, https://doi.org/10.1016/j.knosys.2016.01.009. |
|
362
|
|
|
|
|
363
|
|
|
Attributes: |
|
364
|
|
|
Name (List[str]): List of strings that represent algorithm names. |
|
365
|
|
|
|
|
366
|
|
|
See Also: |
|
367
|
|
|
* :class:`NiaPy.algorithms.basic.mke.MonkeyKingEvolutionV1` |
|
368
|
|
|
""" |
|
369
|
|
|
Name = ['MonkeyKingEvolutionV3', 'MKEv3'] |
|
370
|
|
|
|
|
371
|
|
|
@staticmethod |
|
372
|
|
|
def algorithmInfo(): |
|
373
|
|
|
r"""Get basic information of algorithm. |
|
374
|
|
|
|
|
375
|
|
|
Returns: |
|
376
|
|
|
str: Basic information. |
|
377
|
|
|
|
|
378
|
|
|
See Also: |
|
379
|
|
|
* :func:`NiaPy.algorithms.Algorithm.algorithmInfo` |
|
380
|
|
|
""" |
|
381
|
|
|
return r"""Zhenyu Meng, Jeng-Shyang Pan, Monkey King Evolution: A new memetic evolutionary algorithm and its application in vehicle fuel consumption optimization, Knowledge-Based Systems, Volume 97, 2016, Pages 144-157, ISSN 0950-7051, https://doi.org/10.1016/j.knosys.2016.01.009.""" |
|
382
|
|
|
|
|
383
|
|
|
def setParameters(self, **ukwargs): |
|
384
|
|
|
r"""Set core parameters of MonkeyKingEvolutionV3 algorithm. |
|
385
|
|
|
|
|
386
|
|
|
Args: |
|
387
|
|
|
**ukwargs (Dict[str, Any]): Additional arguments. |
|
388
|
|
|
|
|
389
|
|
|
See Also: |
|
390
|
|
|
* :func:`NiaPy.algorithms.basic.MonkeyKingEvolutionV1.setParameters` |
|
391
|
|
|
""" |
|
392
|
|
|
MonkeyKingEvolutionV1.setParameters(self, itype=ukwargs.pop('itype', None), InitPopFunc=ukwargs.pop('InitPopFunc', defaultNumPyInit), **ukwargs) |
|
393
|
|
|
|
|
394
|
|
|
def neg(self, x): |
|
395
|
|
|
r"""Transform function. |
|
396
|
|
|
|
|
397
|
|
|
Args: |
|
398
|
|
|
x (Union[int, float]): Sould be 0 or 1. |
|
399
|
|
|
|
|
400
|
|
|
Returns: |
|
401
|
|
|
float: If 0 thet 1 else 1 then 0. |
|
402
|
|
|
""" |
|
403
|
|
|
return 0.0 if x == 1.0 else 1.0 |
|
404
|
|
|
|
|
405
|
|
|
def initPopulation(self, task): |
|
406
|
|
|
r"""Initialize the population. |
|
407
|
|
|
|
|
408
|
|
|
Args: |
|
409
|
|
|
task (Task): Optimization task. |
|
410
|
|
|
|
|
411
|
|
|
Returns: |
|
412
|
|
|
Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: |
|
413
|
|
|
1. Initialized population. |
|
414
|
|
|
2. Initialized population function/fitness values. |
|
415
|
|
|
3. Additional arguments: |
|
416
|
|
|
* k (int): TODO. |
|
417
|
|
|
* c (int): TODO. |
|
418
|
|
|
|
|
419
|
|
|
See Also: |
|
420
|
|
|
* :func:`NiaPy.algorithms.algorithm.Algorithm.initPopulation` |
|
421
|
|
|
""" |
|
422
|
|
|
X, X_f, d = Algorithm.initPopulation(self, task) |
|
423
|
|
|
k, c = int(ceil(self.NP / task.D)), int(ceil(self.C * task.D)) |
|
424
|
|
|
d.update({'k': k, 'c': c}) |
|
425
|
|
|
return X, X_f, d |
|
426
|
|
|
|
|
427
|
|
|
def runIteration(self, task, X, X_f, xb, fxb, k, c, **dparams): |
|
428
|
|
|
r"""Core funciton of Monkey King Evolution v3 algorithm. |
|
429
|
|
|
|
|
430
|
|
|
Args: |
|
431
|
|
|
task (Task): Optimization task |
|
432
|
|
|
X (numpy.ndarray): Current population |
|
433
|
|
|
X_f (numpy.ndarray[float]): Current population fitness/function values |
|
434
|
|
|
xb (numpy.ndarray): Current best individual |
|
435
|
|
|
fxb (float): Current best individual function/fitness value |
|
436
|
|
|
k (int): TODO |
|
437
|
|
|
c (int: TODO |
|
438
|
|
|
**dparams: Additional arguments |
|
439
|
|
|
|
|
440
|
|
|
Returns: |
|
441
|
|
|
Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: |
|
442
|
|
|
1. Initialized population. |
|
443
|
|
|
2. Initialized population function/fitness values. |
|
444
|
|
|
3. Additional arguments: |
|
445
|
|
|
* k (int): TODO. |
|
446
|
|
|
* c (int): TODO. |
|
447
|
|
|
""" |
|
448
|
|
|
X_gb = apply_along_axis(task.repair, 1, xb + self.FC * X[self.Rand.choice(len(X), c)] - X[self.Rand.choice(len(X), c)], self.Rand) |
|
449
|
|
|
X_gb_f = apply_along_axis(task.eval, 1, X_gb) |
|
450
|
|
|
M = full([self.NP, task.D], 1.0) |
|
451
|
|
|
for i in range(k): M[i * task.D:(i + 1) * task.D] = tril(M[i * task.D:(i + 1) * task.D]) |
|
452
|
|
|
for i in range(self.NP): self.Rand.shuffle(M[i]) |
|
453
|
|
|
X = apply_along_axis(task.repair, 1, M * X + vectorize(self.neg)(M) * xb, self.Rand) |
|
454
|
|
|
X_f = apply_along_axis(task.eval, 1, X) |
|
455
|
|
|
iw, ib_gb = argmax(X_f), argmin(X_gb_f) |
|
456
|
|
|
if X_gb_f[ib_gb] <= X_f[iw]: X[iw], X_f[iw] = X_gb[ib_gb], X_gb_f[ib_gb] |
|
457
|
|
|
return X, X_f, {'k': k, 'c': c} |
|
458
|
|
|
|
|
459
|
|
|
# vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3 |
|
460
|
|
|
|