Total Complexity | 66 |
Total Lines | 801 |
Duplicated Lines | 4.87 % |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like NiaPy.algorithms.basic.fwa often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | # encoding=utf8 |
||
2 | # pylint: disable=mixed-indentation, trailing-whitespace, multiple-statements, attribute-defined-outside-init, logging-not-lazy, arguments-differ, line-too-long, redefined-builtin, no-self-use, singleton-comparison, unused-argument, bad-continuation |
||
3 | import logging |
||
4 | from numpy import apply_along_axis, argmin, argmax, sum, sqrt, round, argsort, fabs, asarray, where |
||
5 | from NiaPy.algorithms.algorithm import Algorithm |
||
6 | from NiaPy.util import fullArray |
||
7 | |||
8 | logging.basicConfig() |
||
9 | logger = logging.getLogger('NiaPy.algorithms.basic') |
||
10 | logger.setLevel('INFO') |
||
11 | |||
12 | __all__ = ['FireworksAlgorithm', 'EnhancedFireworksAlgorithm', 'DynamicFireworksAlgorithm', 'DynamicFireworksAlgorithmGauss', 'BareBonesFireworksAlgorithm'] |
||
13 | |||
14 | class BareBonesFireworksAlgorithm(Algorithm): |
||
15 | r"""Implementation of bare bone fireworks algorithm. |
||
16 | |||
17 | Algorithm: |
||
18 | Bare Bones Fireworks Algorithm |
||
19 | |||
20 | Date: |
||
21 | 2018 |
||
22 | |||
23 | Authors: |
||
24 | Klemen Berkovič |
||
25 | |||
26 | License: |
||
27 | MIT |
||
28 | |||
29 | Reference URL: |
||
30 | https://www.sciencedirect.com/science/article/pii/S1568494617306609 |
||
31 | |||
32 | Reference paper: |
||
33 | Junzhi Li, Ying Tan, The bare bones fireworks algorithm: A minimalist global optimizer, Applied Soft Computing, Volume 62, 2018, Pages 454-462, ISSN 1568-4946, https://doi.org/10.1016/j.asoc.2017.10.046. |
||
34 | |||
35 | Attributes: |
||
36 | Name (lsit of str): List of strings representing algorithm names |
||
37 | n (int): Number of spraks |
||
38 | C_a (float): amplification coefficient |
||
39 | C_r (float): reduction coefficient |
||
40 | """ |
||
41 | Name = ['BareBonesFireworksAlgorithm', 'BBFWA'] |
||
42 | |||
43 | @staticmethod |
||
44 | def typeParameters(): return { |
||
45 | 'n': lambda x: isinstance(x, int) and x > 0, |
||
46 | 'C_a': lambda x: isinstance(x, (float, int)) and x > 1, |
||
47 | 'C_r': lambda x: isinstance(x, (float, int)) and 0 < x < 1 |
||
48 | } |
||
49 | |||
50 | def setParameters(self, n=10, C_a=1.5, C_r=0.5, **ukwargs): |
||
51 | r"""Set the arguments of an algorithm. |
||
52 | |||
53 | Arguments: |
||
54 | n (int): Number of sparks :math:`\in [1, \infty)`. |
||
55 | C_a (float): Amplification coefficient :math:`\in [1, \infty)`. |
||
56 | C_r (float): Reduction coefficient :math:`\in (0, 1)`. |
||
57 | """ |
||
58 | self.n, self.C_a, self.C_r = n, C_a, C_r |
||
59 | if ukwargs: logger.info('Unused arguments: %s' % (ukwargs)) |
||
60 | |||
61 | def initPopulation(self, task): |
||
62 | r"""Initialize starting population. |
||
63 | |||
64 | Args: |
||
65 | task (Task): Optimization task. |
||
66 | |||
67 | Returns: |
||
68 | Tuple[numpy.ndarray, float, Dict[str, Any]]: |
||
69 | 1. Initial solution. |
||
70 | 2. Initial solution function/fitness value. |
||
71 | 3. Additional arguments: |
||
72 | * A (numpy.ndarray): Starting aplitude or search range. |
||
73 | """ |
||
74 | x, A = self.uniform(task.Lower, task.Upper, task.D), task.bRange |
||
75 | x_fit = task.eval(x) |
||
76 | return x, x_fit, {'A': A} |
||
77 | |||
78 | def runIteration(self, task, x, x_fit, xb, fxb, A, **dparams): |
||
79 | r"""Core function of Bare Bones Fireworks Algorithm. |
||
80 | |||
81 | Args: |
||
82 | task (Task): Optimization task. |
||
83 | x (numpy.ndarray): Current solution. |
||
84 | x_fit (float): Current solution fitness/function value. |
||
85 | xb (numpy.ndarray): Current best solution. |
||
86 | fxb (float): Current best solution fitness/function value. |
||
87 | A (numpy.ndarray): Serach range. |
||
88 | dparams (Dict[str, Any]): Additional parameters. |
||
89 | |||
90 | Returns: |
||
91 | Tuple[numpy.ndarray, float, Dict[str, Any]]: |
||
92 | 1. New solution. |
||
93 | 2. New solution fitness/function value. |
||
94 | 3. Additional arguments: |
||
95 | * A (numpy.ndarray): Serach range. |
||
96 | """ |
||
97 | S = apply_along_axis(task.repair, 1, self.uniform(x - A, x + A, [self.n, task.D]), self.Rand) |
||
98 | S_fit = apply_along_axis(task.eval, 1, S) |
||
99 | iS = argmin(S_fit) |
||
100 | if S_fit[iS] < x_fit: x, x_fit, A = S[iS], S_fit[iS], self.C_a * A |
||
101 | else: A = self.C_r * A |
||
102 | return x, x_fit, {'A': A} |
||
103 | |||
104 | class FireworksAlgorithm(Algorithm): |
||
105 | r"""Implementation of fireworks algorithm. |
||
106 | |||
107 | Algorithm: |
||
108 | Fireworks Algorithm |
||
109 | |||
110 | Date: |
||
111 | 2018 |
||
112 | |||
113 | Authors: |
||
114 | Klemen Berkovič |
||
115 | |||
116 | License: |
||
117 | MIT |
||
118 | |||
119 | Reference URL: |
||
120 | https://www.springer.com/gp/book/9783662463529 |
||
121 | |||
122 | Reference paper: |
||
123 | Tan, Ying. "Firework Algorithm: A Novel Swarm Intelligence Optimization Method." (2015). |
||
124 | |||
125 | Attributes: |
||
126 | Name (List[str]): List of stirngs representing algorithm names. |
||
127 | """ |
||
128 | Name = ['FireworksAlgorithm', 'FWA'] |
||
129 | |||
130 | View Code Duplication | @staticmethod |
|
|
|||
131 | def typeParameters(): return { |
||
132 | 'N': lambda x: isinstance(x, int) and x > 0, |
||
133 | 'm': lambda x: isinstance(x, int) and x > 0, |
||
134 | 'a': lambda x: isinstance(x, (int, float)) and x > 0, |
||
135 | 'b': lambda x: isinstance(x, (int, float)) and x > 0, |
||
136 | 'epsilon': lambda x: isinstance(x, float) and 0 < x < 1 |
||
137 | } |
||
138 | |||
139 | def setParameters(self, N=40, m=40, a=1, b=2, A=40, epsilon=1e-31, **ukwargs): |
||
140 | r"""Set the arguments of an algorithm. |
||
141 | |||
142 | Arguments: |
||
143 | N (int): Number of Fireworks |
||
144 | m (int): Number of sparks |
||
145 | a (int): Limitation of sparks |
||
146 | b (int): Limitation of sparks |
||
147 | A (float): -- |
||
148 | epsilon (float): Small number for non 0 devision |
||
149 | """ |
||
150 | Algorithm.setParameters(self, NP=N, **ukwargs) |
||
151 | self.m, self.a, self.b, self.A, self.epsilon = m, a, b, A, epsilon |
||
152 | if ukwargs: logger.info('Unused arguments: %s' % (ukwargs)) |
||
153 | |||
154 | def initAmplitude(self, task): |
||
155 | r"""Initialize amplitudes for dimensions. |
||
156 | |||
157 | Args: |
||
158 | task (Task): Optimization task. |
||
159 | |||
160 | Returns: |
||
161 | numpy.ndarray[float]: Starting amplitudes. |
||
162 | """ |
||
163 | return fullArray(self.A, task.D) |
||
164 | |||
165 | def SparsksNo(self, x_f, xw_f, Ss): |
||
166 | r"""Calculate number of sparks based on function value of individual. |
||
167 | |||
168 | Args: |
||
169 | x_f (float): Individuals function/fitness value. |
||
170 | xw_f (float): Worst individual function/fitness value. |
||
171 | Ss (): TODO |
||
172 | |||
173 | Returns: |
||
174 | int: Number of sparks that individual will create. |
||
175 | """ |
||
176 | s = self.m * (xw_f - x_f + self.epsilon) / (Ss + self.epsilon) |
||
177 | return round(self.b * self.m) if s > self.b * self.m and self.a < self.b < 1 else round(self.a * self.m) |
||
178 | |||
179 | def ExplosionAmplitude(self, x_f, xb_f, A, As): |
||
180 | r"""Calculate explosion amplitude. |
||
181 | |||
182 | Args: |
||
183 | x_f (float): Individuals function/fitness value. |
||
184 | xb_f (float): Best individuals function/fitness value. |
||
185 | A (numpy.ndarray): Amplitudes. |
||
186 | As (): |
||
187 | |||
188 | Returns: |
||
189 | numpy.ndarray: TODO. |
||
190 | """ |
||
191 | return A * (x_f - xb_f - self.epsilon) / (As + self.epsilon) |
||
192 | |||
193 | def ExplodeSpark(self, x, A, task): |
||
194 | r"""Explode a spark. |
||
195 | |||
196 | Args: |
||
197 | x (numpy.ndarray): Individuals creating spark. |
||
198 | A (numpy.ndarray): Amplitude of spark. |
||
199 | task (Task): Optimization task. |
||
200 | |||
201 | Returns: |
||
202 | numpy.ndarray: Sparks exploded in with specified amplitude. |
||
203 | """ |
||
204 | return self.Mapping(x + self.rand(task.D) * self.uniform(-A, A, task.D), task) |
||
205 | |||
206 | def GaussianSpark(self, x, task): |
||
207 | r"""Create gaussian spark. |
||
208 | |||
209 | Args: |
||
210 | x (numpy.ndarray): Individual creating a spark. |
||
211 | task (Task): Optimization task. |
||
212 | |||
213 | Returns: |
||
214 | numpy.ndarray: Spark exploded based on gaussian amplitude. |
||
215 | """ |
||
216 | return self.Mapping(x + self.rand(task.D) * self.normal(1, 1, task.D), task) |
||
217 | |||
218 | View Code Duplication | def Mapping(self, x, task): |
|
219 | r"""Fix value to bounds.. |
||
220 | |||
221 | Args: |
||
222 | x (numpy.ndarray): Individual to fix. |
||
223 | task (Task): Optimization task. |
||
224 | |||
225 | Returns: |
||
226 | numpy.ndarray: Individual in search range. |
||
227 | """ |
||
228 | ir = where(x > task.Upper) |
||
229 | x[ir] = task.Lower[ir] + x[ir] % task.bRange[ir] |
||
230 | ir = where(x < task.Lower) |
||
231 | x[ir] = task.Lower[ir] + x[ir] % task.bRange[ir] |
||
232 | return x |
||
233 | |||
234 | def R(self, x, FW): |
||
235 | r"""Calculate ranges. |
||
236 | |||
237 | Args: |
||
238 | x (numpy.ndarray): Individual in population. |
||
239 | FW (numpy.ndarray): Current population. |
||
240 | |||
241 | Returns: |
||
242 | numpy,ndarray[float]: Ranges values. |
||
243 | """ |
||
244 | return sqrt(sum(fabs(x - FW))) |
||
245 | |||
246 | def p(self, r, Rs): |
||
247 | r"""Calculate p. |
||
248 | |||
249 | Args: |
||
250 | r (float): Range of individual. |
||
251 | Rs (float): Sum of ranges. |
||
252 | |||
253 | Returns: |
||
254 | float: p value. |
||
255 | """ |
||
256 | return r / Rs |
||
257 | |||
258 | def NextGeneration(self, FW, FW_f, FWn, task): |
||
259 | r"""Generate new generation of individuals. |
||
260 | |||
261 | Args: |
||
262 | FW (numpy.ndarray): Current population. |
||
263 | FW_f (numpy.ndarray[float]): Currents population fitness/function values. |
||
264 | FWn (numpy.ndarray): New population. |
||
265 | task (Task): Optimization task. |
||
266 | |||
267 | Returns: |
||
268 | Tuple[numpy.ndarray, numpy.ndarray[float]]: |
||
269 | 1. New population. |
||
270 | 2. New populations fitness/function values. |
||
271 | """ |
||
272 | FWn_f = apply_along_axis(task.eval, 1, FWn) |
||
273 | ib = argmin(FWn_f) |
||
274 | if FWn_f[ib] < FW_f[0]: FW[0], FW_f[0] = FWn[ib], FWn_f[ib] |
||
275 | R = asarray([self.R(FWn[i], FWn) for i in range(len(FWn))]) |
||
276 | Rs = sum(R) |
||
277 | P = asarray([self.p(R[i], Rs) for i in range(len(FWn))]) |
||
278 | isort = argsort(P)[-(self.NP - 1):] |
||
279 | FW[1:], FW_f[1:] = asarray(FWn)[isort], FWn_f[isort] |
||
280 | return FW, FW_f |
||
281 | |||
282 | def initPopulation(self, task): |
||
283 | r"""Initialize starting population. |
||
284 | |||
285 | Args: |
||
286 | task (Task): Optimization task. |
||
287 | |||
288 | Returns: |
||
289 | Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: |
||
290 | 1. Initialized population. |
||
291 | 2. Initialized populations function/fitness values. |
||
292 | 3. Additional arguments: |
||
293 | * Ah (numpy.ndarray): Initialized amplitudes. |
||
294 | |||
295 | See Also: |
||
296 | * :func:`NiaPy.algorithms.algorithm.Algorithm.initPopulation` |
||
297 | """ |
||
298 | FW, FW_f, d = Algorithm.initPopulation(self, task) |
||
299 | Ah = self.initAmplitude(task) |
||
300 | d.update({'Ah': Ah}) |
||
301 | return FW, FW_f, d |
||
302 | |||
303 | def runIteration(self, task, FW, FW_f, xb, fxb, Ah, **dparams): |
||
304 | r"""Core function of Fireworks algorithm. |
||
305 | |||
306 | Args: |
||
307 | task (Task): Optimization task. |
||
308 | FW (numpy.ndarray): Current population. |
||
309 | FW_f (numpy.ndarray[float]): Current populations function/fitness values. |
||
310 | xb (numpy.ndarray): Global best individual. |
||
311 | fxb (float): Global best individuals fitness/function value. |
||
312 | Ah (numpy.ndarray): Current amplitudes. |
||
313 | **dparams (Dict[str, Any)]: Additional arguments |
||
314 | |||
315 | Returns: |
||
316 | Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: |
||
317 | 1. Initialized population. |
||
318 | 2. Initialized populations function/fitness values. |
||
319 | 3. Additional arguments: |
||
320 | * Ah (numpy.ndarray): Initialized amplitudes. |
||
321 | |||
322 | See Also: |
||
323 | * :func:`FireworksAlgorithm.SparsksNo`. |
||
324 | * :func:`FireworksAlgorithm.ExplosionAmplitude` |
||
325 | * :func:`FireworksAlgorithm.ExplodeSpark` |
||
326 | * :func:`FireworksAlgorithm.GaussianSpark` |
||
327 | * :func:`FireworksAlgorithm.NextGeneration` |
||
328 | """ |
||
329 | iw, ib = argmax(FW_f), 0 |
||
330 | Ss, As = sum(FW_f[iw] - FW_f), sum(FW_f - FW_f[ib]) |
||
331 | S = [self.SparsksNo(FW_f[i], FW_f[iw], Ss) for i in range(self.NP)] |
||
332 | A = [self.ExplosionAmplitude(FW_f[i], FW_f[ib], Ah, As) for i in range(self.NP)] |
||
333 | FWn = [self.ExplodeSpark(FW[i], A[i], task) for i in range(self.NP) for _ in range(S[i])] |
||
334 | for i in range(self.m): FWn.append(self.GaussianSpark(self.randint(self.NP), task)) |
||
335 | FW, FW_f = self.NextGeneration(FW, FW_f, FWn, task) |
||
336 | return FW, FW_f, {'Ah': Ah} |
||
337 | |||
338 | class EnhancedFireworksAlgorithm(FireworksAlgorithm): |
||
339 | r"""Implementation of enganced fireworks algorithm. |
||
340 | |||
341 | Algorithm: |
||
342 | Enhanced Fireworks Algorithm |
||
343 | |||
344 | Date: |
||
345 | 2018 |
||
346 | |||
347 | Authors: |
||
348 | Klemen Berkovič |
||
349 | |||
350 | License: |
||
351 | MIT |
||
352 | |||
353 | Reference URL: |
||
354 | https://ieeexplore.ieee.org/document/6557813/ |
||
355 | |||
356 | Reference paper: |
||
357 | S. Zheng, A. Janecek and Y. Tan, "Enhanced Fireworks Algorithm," 2013 IEEE Congress on Evolutionary Computation, Cancun, 2013, pp. 2069-2077. doi: 10.1109/CEC.2013.6557813 |
||
358 | |||
359 | Attributes: |
||
360 | Name (List[str]): List of strings representing algorithm names. |
||
361 | Ainit (float): TODO |
||
362 | Afinal (float): TODO |
||
363 | """ |
||
364 | Name = ['EnhancedFireworksAlgorithm', 'EFWA'] |
||
365 | |||
366 | @staticmethod |
||
367 | def typeParameters(): |
||
368 | r"""Get dictionary with functions for checking values of parameters. |
||
369 | |||
370 | Returns: |
||
371 | Dict[str, Callable]: |
||
372 | * Ainit (Callable[[Union[int, float]], bool]): TODO |
||
373 | * Afinal (Callable[[Union[int, float]], bool]): TODO |
||
374 | |||
375 | See Also: |
||
376 | * :func:`FireworksAlgorithm.typeParameters` |
||
377 | """ |
||
378 | d = FireworksAlgorithm.typeParameters() |
||
379 | d['Ainit'] = lambda x: isinstance(x, (float, int)) and x > 0 |
||
380 | d['Afinal'] = lambda x: isinstance(x, (float, int)) and x > 0 |
||
381 | return d |
||
382 | |||
383 | def setParameters(self, Ainit=20, Afinal=5, **ukwargs): |
||
384 | r"""Set EnhancedFireworksAlgorithm algorithms core parameters. |
||
385 | |||
386 | Args: |
||
387 | Ainit (float): TODO |
||
388 | Afinal (float): TODO |
||
389 | **ukwargs (Dict[str, Any]): Additional arguments. |
||
390 | |||
391 | See Also: |
||
392 | * :func:`FireworksAlgorithm.setParameters` |
||
393 | """ |
||
394 | FireworksAlgorithm.setParameters(self, **ukwargs) |
||
395 | self.Ainit, self.Afinal = Ainit, Afinal |
||
396 | |||
397 | def initRanges(self, task): |
||
398 | r"""Initialize ranges. |
||
399 | |||
400 | Args: |
||
401 | task (Task): Optimization task. |
||
402 | |||
403 | Returns: |
||
404 | Tuple[numpy.ndarray[float], numpy.ndarray[float], numpy.ndarray[float]]: |
||
405 | 1. Initial amplitude values over dimensions. |
||
406 | 2. Final amplitude values over dimensions. |
||
407 | 3. uAmin. |
||
408 | """ |
||
409 | Ainit, Afinal = fullArray(self.Ainit, task.D), fullArray(self.Afinal, task.D) |
||
410 | return Ainit, Afinal, self.uAmin(Ainit, Afinal, task) |
||
411 | |||
412 | def uAmin(self, Ainit, Afinal, task): |
||
413 | r"""Calculate the value of `uAmin`. |
||
414 | |||
415 | Args: |
||
416 | Ainit (numpy.ndarray[float]): Initial amplitude values over dimensions. |
||
417 | Afinal (numpy.ndarray[float]): Final amplitude values over dimensions. |
||
418 | task (Task): Optimization task. |
||
419 | |||
420 | Returns: |
||
421 | numpy.ndarray[float]: uAmin. |
||
422 | """ |
||
423 | return Ainit - sqrt(task.Evals * (2 * task.nFES - task.Evals)) * (Ainit - Afinal) / task.nFES |
||
424 | |||
425 | def ExplosionAmplitude(self, x_f, xb_f, Ah, As, A_min=None): |
||
426 | r"""Calculate explosion amplitude. |
||
427 | |||
428 | Args: |
||
429 | x_f (float): Individuals function/fitness value. |
||
430 | xb_f (float): Best individual function/fitness value. |
||
431 | Ah (numpy.ndarray): |
||
432 | As (): TODO. |
||
433 | A_min (Optional[numpy.ndarray]): Minimal amplitude values. |
||
434 | task (Task): Optimization task. |
||
435 | |||
436 | Returns: |
||
437 | numpy.ndarray: New amplitude. |
||
438 | """ |
||
439 | A = FireworksAlgorithm.ExplosionAmplitude(self, x_f, xb_f, Ah, As) |
||
440 | ifix = where(A < A_min) |
||
441 | A[ifix] = A_min[ifix] |
||
442 | return A |
||
443 | |||
444 | def GaussianSpark(self, x, xb, task): |
||
445 | r"""Create new individual. |
||
446 | |||
447 | Args: |
||
448 | x (numpy.ndarray): |
||
449 | xb (numpy.ndarray): |
||
450 | task (Task): Optimization task. |
||
451 | |||
452 | Returns: |
||
453 | numpy.ndarray: New individual generated by gaussian noise. |
||
454 | """ |
||
455 | return self.Mapping(x + self.rand(task.D) * (xb - x) * self.normal(1, 1, task.D), task) |
||
456 | |||
457 | def NextGeneration(self, FW, FW_f, FWn, task): |
||
458 | r"""Generate new population. |
||
459 | |||
460 | Args: |
||
461 | FW (numpy.ndarray): Current population. |
||
462 | FW_f (numpy.ndarray[float]): Current populations fitness/function values. |
||
463 | FWn (numpy.ndarray): New population. |
||
464 | task (Task): Optimization task. |
||
465 | |||
466 | Returns: |
||
467 | Tuple[numpy.ndarray, numpy.ndarray[float]]: |
||
468 | 1. New population. |
||
469 | 2. New populations fitness/function values. |
||
470 | """ |
||
471 | FWn_f = apply_along_axis(task.eval, 1, FWn) |
||
472 | ib = argmin(FWn_f) |
||
473 | if FWn_f[ib] < FW_f[0]: FW[0], FW_f[0] = FWn[ib], FWn_f[ib] |
||
474 | for i in range(1, self.NP): |
||
475 | r = self.randint(len(FWn)) |
||
476 | if FWn_f[r] < FW_f[i]: FW[i], FW_f[i] = FWn[r], FWn_f[r] |
||
477 | return FW, FW_f |
||
478 | |||
479 | def initPopulation(self, task): |
||
480 | r"""Initialize population. |
||
481 | |||
482 | Args: |
||
483 | task (Task): Optimization task. |
||
484 | |||
485 | Returns: |
||
486 | Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: |
||
487 | 1. Initial population. |
||
488 | 2. Initial populations fitness/function values. |
||
489 | 3. Additional arguments: |
||
490 | * Ainit (numpy.ndarray): Initial amplitude values. |
||
491 | * Afinal (numpy.ndarray): Final amplitude values. |
||
492 | * A_min (numpy.ndarray): Minimal amplitude values. |
||
493 | |||
494 | See Also: |
||
495 | * :func:`FireworksAlgorithm.initPopulation` |
||
496 | """ |
||
497 | FW, FW_f, d = FireworksAlgorithm.initPopulation(self, task) |
||
498 | Ainit, Afinal, A_min = self.initRanges(task) |
||
499 | d.update({'Ainit': Ainit, 'Afinal': Afinal, 'A_min': A_min}) |
||
500 | return FW, FW_f, d |
||
501 | |||
502 | def runIteration(self, task, FW, FW_f, xb, fxb, Ah, Ainit, Afinal, A_min, **dparams): |
||
503 | r"""Core function of EnhancedFireworksAlgorithm algorithm. |
||
504 | |||
505 | Args: |
||
506 | task (Task): Optimization task. |
||
507 | FW (numpy.ndarray): Current population. |
||
508 | FW_f (numpy.ndarray[float]): Current populations fitness/function values. |
||
509 | xb (numpy.ndarray): Global best individual. |
||
510 | fxb (float): Global best individuals function/fitness value. |
||
511 | Ah (numpy.ndarray[float]): Current amplitude. |
||
512 | Ainit (numpy.ndarray[float]): Initial amplitude. |
||
513 | Afinal (numpy.ndarray[float]): Final amplitude values. |
||
514 | A_min (numpy.ndarray[float]): Minial amplitude values. |
||
515 | **dparams (Dict[str, Any]): Additional arguments. |
||
516 | |||
517 | Returns: |
||
518 | Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: |
||
519 | 1. Initial population. |
||
520 | 2. Initial populations fitness/function values. |
||
521 | 3. Additional arguments: |
||
522 | * Ainit (numpy.ndarray): Initial amplitude values. |
||
523 | * Afinal (numpy.ndarray): Final amplitude values. |
||
524 | * A_min (numpy.ndarray): Minimal amplitude values. |
||
525 | """ |
||
526 | iw, ib = argmax(FW_f), 0 |
||
527 | Ss, As = sum(FW_f[iw] - FW_f), sum(FW_f - FW_f[ib]) |
||
528 | S = [self.SparsksNo(FW_f[i], FW_f[iw], Ss) for i in range(self.NP)] |
||
529 | A = [self.ExplosionAmplitude(FW_f[i], FW_f[ib], Ah, As, A_min) for i in range(self.NP)] |
||
530 | A_min = self.uAmin(Ainit, Afinal, task) |
||
531 | FWn = [self.ExplodeSpark(FW[i], A[i], task) for i in range(self.NP) for _ in range(S[i])] |
||
532 | for i in range(self.m): FWn.append(self.GaussianSpark(self.randint(self.NP), FW[ib], task)) |
||
533 | FW, FW_f = self.NextGeneration(FW, FW_f, FWn, task) |
||
534 | return FW, FW_f, {'Ah': Ah, 'Ainit': Ainit, 'Afinal': Afinal, 'A_min': A_min} |
||
535 | |||
536 | class DynamicFireworksAlgorithmGauss(EnhancedFireworksAlgorithm): |
||
537 | r"""Implementation of dynamic fireworks algorithm. |
||
538 | |||
539 | Algorithm: |
||
540 | Dynamic Fireworks Algorithm |
||
541 | |||
542 | Date: |
||
543 | 2018 |
||
544 | |||
545 | Authors: |
||
546 | Klemen Berkovič |
||
547 | |||
548 | License: |
||
549 | MIT |
||
550 | |||
551 | Reference URL: |
||
552 | http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6900485&isnumber=6900223 |
||
553 | |||
554 | Reference paper: |
||
555 | S. Zheng, A. Janecek, J. Li and Y. Tan, "Dynamic search in fireworks algorithm," 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, 2014, pp. 3222-3229. doi: 10.1109/CEC.2014.6900485 |
||
556 | |||
557 | Attributes: |
||
558 | Name (List[str]): List of strings representing algorithm names. |
||
559 | A_cf (Union[float, int]): TODO |
||
560 | C_a (Union[float, int]): TODO |
||
561 | C_r (Union[float, int]): TODO |
||
562 | epsilon (Union[float, int]): TODO |
||
563 | """ |
||
564 | Name = ['DynamicFireworksAlgorithmGauss', 'dynFWAG'] |
||
565 | |||
566 | View Code Duplication | @staticmethod |
|
567 | def typeParameters(): |
||
568 | r"""Get dictionary with functions for checking values of parameters. |
||
569 | |||
570 | Returns: |
||
571 | Dict[str, Callable]: |
||
572 | * A_cr (Callable[[Union[float, int], bool]): TODo |
||
573 | |||
574 | See Also: |
||
575 | * :func:`FireworksAlgorithm.typeParameters` |
||
576 | """ |
||
577 | d = FireworksAlgorithm.typeParameters() |
||
578 | d['A_cf'] = lambda x: isinstance(x, (float, int)) and x > 0 |
||
579 | d['C_a'] = lambda x: isinstance(x, (float, int)) and x > 1 |
||
580 | d['C_r'] = lambda x: isinstance(x, (float, int)) and 0 < x < 1 |
||
581 | d['epsilon'] = lambda x: isinstance(x, (float, int)) and 0 < x < 1 |
||
582 | return d |
||
583 | |||
584 | def setParameters(self, A_cf=20, C_a=1.2, C_r=0.9, epsilon=1e-8, **ukwargs): |
||
585 | r"""Set core arguments of DynamicFireworksAlgorithmGauss. |
||
586 | |||
587 | Args: |
||
588 | A_cf (Union[int, float]): |
||
589 | C_a (Union[int, float]): |
||
590 | C_r (Union[int, float]): |
||
591 | epsilon (Union[int, float]): |
||
592 | **ukwargs (Dict[str, Any]): Additional arguments. |
||
593 | |||
594 | See Also: |
||
595 | * :func:`FireworksAlgorithm.setParameters` |
||
596 | """ |
||
597 | FireworksAlgorithm.setParameters(self, **ukwargs) |
||
598 | self.A_cf, self.C_a, self.C_r, self.epsilon = A_cf, C_a, C_r, epsilon |
||
599 | |||
600 | def initAmplitude(self, task): |
||
601 | r"""Initialize amplitude. |
||
602 | |||
603 | Args: |
||
604 | task (Task): Optimization task. |
||
605 | |||
606 | Returns: |
||
607 | Tuple[numpy.ndarray, numpy.ndarray]: |
||
608 | 1. TODO |
||
609 | """ |
||
610 | return FireworksAlgorithm.initAmplitude(self, task), task.bRange |
||
611 | |||
612 | def Mapping(self, x, task): |
||
613 | r"""Fix out of bound solution/individual. |
||
614 | |||
615 | Args: |
||
616 | x (numpy.ndarray): Individual. |
||
617 | task (Task): Optimization task. |
||
618 | |||
619 | Returns: |
||
620 | numpy.ndarray: Fixed individual. |
||
621 | """ |
||
622 | ir = where(x > task.Upper) |
||
623 | x[ir] = self.uniform(task.Lower[ir], task.Upper[ir]) |
||
624 | ir = where(x < task.Lower) |
||
625 | x[ir] = self.uniform(task.Lower[ir], task.Upper[ir]) |
||
626 | return x |
||
627 | |||
628 | def repair(self, x, d, epsilon): |
||
629 | r"""Repair solution. |
||
630 | |||
631 | Args: |
||
632 | x (numpy.ndarray): Individual. |
||
633 | d (numpy.ndarray): Default value. |
||
634 | epsilon (float): Limiting value. |
||
635 | |||
636 | Returns: |
||
637 | numpy.ndarray: Fixed solution. |
||
638 | """ |
||
639 | ir = where(x <= epsilon) |
||
640 | x[ir] = d[ir] |
||
641 | return x |
||
642 | |||
643 | def NextGeneration(self, FW, FW_f, FWn, task): |
||
644 | r"""TODO. |
||
645 | |||
646 | Args: |
||
647 | FW (numpy.ndarray): Current population. |
||
648 | FW_f (numpy.ndarray[float]): Current populations function/fitness values. |
||
649 | FWn (numpy.ndarray): New population. |
||
650 | task (Task): Optimization task. |
||
651 | |||
652 | Returns: |
||
653 | Tuple[numpy.ndarray, numpy.ndarray[float]]: |
||
654 | 1. New population. |
||
655 | 2. New populations function/fitness values. |
||
656 | """ |
||
657 | FWn_f = apply_along_axis(task.eval, 1, FWn) |
||
658 | ib = argmin(FWn_f) |
||
659 | for i, f in enumerate(FW_f): |
||
660 | r = self.randint(len(FWn)) |
||
661 | if FWn_f[r] < f: FW[i], FW_f[i] = FWn[r], FWn_f[r] |
||
662 | FW[0], FW_f[0] = FWn[ib], FWn_f[ib] |
||
663 | return FW, FW_f |
||
664 | |||
665 | def uCF(self, xnb, xcb, xcb_f, xb, xb_f, Acf, task): |
||
666 | r"""TODO. |
||
667 | |||
668 | Args: |
||
669 | xnb: |
||
670 | xcb: |
||
671 | xcb_f: |
||
672 | xb: |
||
673 | xb_f: |
||
674 | Acf: |
||
675 | task (Task): Optimization task. |
||
676 | |||
677 | Returns: |
||
678 | Tuple[]: |
||
679 | 1. TODO |
||
680 | """ |
||
681 | xnb_f = apply_along_axis(task.eval, 1, xnb) |
||
682 | ib_f = argmin(xnb_f) |
||
683 | if xnb_f[ib_f] <= xb_f: xb, xb_f = xnb[ib_f], xnb_f[ib_f] |
||
684 | Acf = self.repair(Acf, task.bRange, self.epsilon) |
||
685 | if xb_f >= xcb_f: xb, xb_f, Acf = xcb, xcb_f, Acf * self.C_a |
||
686 | else: Acf = Acf * self.C_r |
||
687 | return xb, xb_f, Acf |
||
688 | |||
689 | def ExplosionAmplitude(self, x_f, xb_f, Ah, As, A_min=None): |
||
690 | return FireworksAlgorithm.ExplosionAmplitude(self, x_f, xb_f, Ah, As) |
||
691 | |||
692 | def initPopulation(self, task): |
||
693 | r"""Initialize population. |
||
694 | |||
695 | Args: |
||
696 | task (Task): Optimization task. |
||
697 | |||
698 | Returns: |
||
699 | Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: |
||
700 | 1. Initialized population. |
||
701 | 2. Initialized population function/fitness values. |
||
702 | 3. Additional arguments: |
||
703 | * Ah (): TODO |
||
704 | * Ab (): TODO |
||
705 | """ |
||
706 | FW, FW_f, _ = Algorithm.initPopulation(self, task) |
||
707 | Ah, Ab = self.initAmplitude(task) |
||
708 | return FW, FW_f, {'Ah': Ah, 'Ab': Ab} |
||
709 | |||
710 | def runIteration(self, task, FW, FW_f, xb, fxb, Ah, Ab, **dparams): |
||
711 | r"""Core function of DynamicFireworksAlgorithmGauss algorithm. |
||
712 | |||
713 | Args: |
||
714 | task (Task): Optimization task. |
||
715 | FW (numpy.ndarray): Current population. |
||
716 | FW_f (numpy.ndarray[float]): Current populations function/fitness values. |
||
717 | xb (numpy.ndarray): Global best individual. |
||
718 | fxb (float): Global best fitness/function value. |
||
719 | Ah (): TODO |
||
720 | Ab (): TODO |
||
721 | **dparams (Dict[str, Any]): Additional arguments. |
||
722 | |||
723 | Returns: |
||
724 | Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: |
||
725 | 1. New population. |
||
726 | 2. New populations fitness/function values. |
||
727 | 3. Additional arguments: |
||
728 | * Ah (): TODO |
||
729 | * Ab (): TODO |
||
730 | """ |
||
731 | iw, ib = argmax(FW_f), argmin(FW_f) |
||
732 | Ss, As = sum(FW_f[iw] - FW_f), sum(FW_f - FW_f[ib]) |
||
733 | S, sb = [self.SparsksNo(FW_f[i], FW_f[iw], Ss) for i in range(len(FW))], self.SparsksNo(fxb, FW_f[iw], Ss) |
||
734 | A = [self.ExplosionAmplitude(FW_f[i], FW_f[ib], Ah, As) for i in range(len(FW))] |
||
735 | FWn, xnb = [self.ExplodeSpark(FW[i], A[i], task) for i in range(self.NP) for _ in range(S[i])], [self.ExplodeSpark(xb, Ab, task) for _ in range(sb)] |
||
736 | for i in range(self.m): FWn.append(self.GaussianSpark(self.randint(self.NP), FW[ib], task)) |
||
737 | FW, FW_f = self.NextGeneration(FW, FW_f, FWn, task) |
||
738 | iw, ib = argmax(FW_f), 0 |
||
739 | _, _, Ab = self.uCF(xnb, FW[ib], FW_f[ib], xb, fxb, Ab, task) |
||
740 | return FW, FW_f, {'Ah': Ah, 'Ab': Ab} |
||
741 | |||
742 | class DynamicFireworksAlgorithm(DynamicFireworksAlgorithmGauss): |
||
743 | r"""Implementation of dynamic fireworks algorithm. |
||
744 | |||
745 | Algorithm: |
||
746 | Dynamic Fireworks Algorithm |
||
747 | |||
748 | Date: |
||
749 | 2018 |
||
750 | |||
751 | Authors: |
||
752 | Klemen Berkovič |
||
753 | |||
754 | License: |
||
755 | MIT |
||
756 | |||
757 | Reference URL: |
||
758 | http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6900485&isnumber=6900223 |
||
759 | |||
760 | Reference paper: |
||
761 | S. Zheng, A. Janecek, J. Li and Y. Tan, "Dynamic search in fireworks algorithm," 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, 2014, pp. 3222-3229. doi: 10.1109/CEC.2014.6900485 |
||
762 | |||
763 | Attributes: |
||
764 | Name (List[str]): List of strings representing algorithm name. |
||
765 | |||
766 | See Also: |
||
767 | * :class:`NiaPy.algorithms.basic.DynamicFireworksAlgorithmGauss` |
||
768 | """ |
||
769 | Name = ['DynamicFireworksAlgorithm', 'dynFWA'] |
||
770 | |||
771 | def runIteration(self, task, FW, FW_f, xb, fxb, Ah, Ab, **dparams): |
||
772 | r"""Core function of Dynamic Fireworks Algorithm. |
||
773 | |||
774 | Args: |
||
775 | task (Task): Optimization task |
||
776 | FW (numpy.ndarray): Current population |
||
777 | FW_f (numpy.ndarray[float]): Current population fitness/function values |
||
778 | xb (numpy.ndarray): Current best solution |
||
779 | fxb (float): Current best solution's fitness/function value |
||
780 | Ah (): TODO |
||
781 | Ab (): TODO |
||
782 | **dparams: |
||
783 | |||
784 | Returns: |
||
785 | Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: |
||
786 | 1. New population. |
||
787 | 2. New population function/fitness values. |
||
788 | 3. Additional arguments: |
||
789 | * Ah (): TODO |
||
790 | * Ab (): TODO |
||
791 | """ |
||
792 | iw, ib = argmax(FW_f), argmin(FW_f) |
||
793 | Ss, As = sum(FW_f[iw] - FW_f), sum(FW_f - FW_f[ib]) |
||
794 | S, sb = [self.SparsksNo(FW_f[i], FW_f[iw], Ss) for i in range(len(FW))], self.SparsksNo(fxb, FW_f[iw], Ss) |
||
795 | A = [self.ExplosionAmplitude(FW_f[i], FW_f[ib], Ah, As) for i in range(len(FW))] |
||
796 | FWn, xnb = [self.ExplodeSpark(FW[i], A[i], task) for i in range(self.NP) for _ in range(S[i])], [self.ExplodeSpark(xb, Ab, task) for _ in range(sb)] |
||
797 | FW, FW_f = self.NextGeneration(FW, FW_f, FWn, task) |
||
798 | iw, ib = argmax(FW_f), 0 |
||
799 | _, _, Ab = self.uCF(xnb, FW[ib], FW_f[ib], xb, fxb, Ab, task) |
||
800 | return FW, FW_f, {'Ah': Ah, 'Ab': Ab} |
||
801 | |||
803 |