1
|
|
|
# encoding=utf8 |
2
|
|
|
# pylint: disable=mixed-indentation, trailing-whitespace, multiple-statements, attribute-defined-outside-init, logging-not-lazy, arguments-differ, line-too-long, redefined-builtin, no-self-use, singleton-comparison, unused-argument, bad-continuation |
3
|
|
|
import logging |
4
|
|
|
from numpy import apply_along_axis, argmin, argmax, sum, sqrt, round, argsort, fabs, asarray, where |
5
|
|
|
from NiaPy.algorithms.algorithm import Algorithm |
6
|
|
|
from NiaPy.util import fullArray |
7
|
|
|
|
8
|
|
|
logging.basicConfig() |
9
|
|
|
logger = logging.getLogger('NiaPy.algorithms.basic') |
10
|
|
|
logger.setLevel('INFO') |
11
|
|
|
|
12
|
|
|
__all__ = ['FireworksAlgorithm', 'EnhancedFireworksAlgorithm', 'DynamicFireworksAlgorithm', 'DynamicFireworksAlgorithmGauss', 'BareBonesFireworksAlgorithm'] |
13
|
|
|
|
14
|
|
|
class BareBonesFireworksAlgorithm(Algorithm): |
15
|
|
|
r"""Implementation of bare bone fireworks algorithm. |
16
|
|
|
|
17
|
|
|
Algorithm: |
18
|
|
|
Bare Bones Fireworks Algorithm |
19
|
|
|
|
20
|
|
|
Date: |
21
|
|
|
2018 |
22
|
|
|
|
23
|
|
|
Authors: |
24
|
|
|
Klemen Berkovič |
25
|
|
|
|
26
|
|
|
License: |
27
|
|
|
MIT |
28
|
|
|
|
29
|
|
|
Reference URL: |
30
|
|
|
https://www.sciencedirect.com/science/article/pii/S1568494617306609 |
31
|
|
|
|
32
|
|
|
Reference paper: |
33
|
|
|
Junzhi Li, Ying Tan, The bare bones fireworks algorithm: A minimalist global optimizer, Applied Soft Computing, Volume 62, 2018, Pages 454-462, ISSN 1568-4946, https://doi.org/10.1016/j.asoc.2017.10.046. |
34
|
|
|
|
35
|
|
|
Attributes: |
36
|
|
|
Name (lsit of str): List of strings representing algorithm names |
37
|
|
|
n (int): Number of spraks |
38
|
|
|
C_a (float): amplification coefficient |
39
|
|
|
C_r (float): reduction coefficient |
40
|
|
|
""" |
41
|
|
|
Name = ['BareBonesFireworksAlgorithm', 'BBFWA'] |
42
|
|
|
|
43
|
|
|
@staticmethod |
44
|
|
|
def typeParameters(): return { |
45
|
|
|
'n': lambda x: isinstance(x, int) and x > 0, |
46
|
|
|
'C_a': lambda x: isinstance(x, (float, int)) and x > 1, |
47
|
|
|
'C_r': lambda x: isinstance(x, (float, int)) and 0 < x < 1 |
48
|
|
|
} |
49
|
|
|
|
50
|
|
|
def setParameters(self, n=10, C_a=1.5, C_r=0.5, **ukwargs): |
51
|
|
|
r"""Set the arguments of an algorithm. |
52
|
|
|
|
53
|
|
|
Arguments: |
54
|
|
|
n (int): Number of sparks :math:`\in [1, \infty)`. |
55
|
|
|
C_a (float): Amplification coefficient :math:`\in [1, \infty)`. |
56
|
|
|
C_r (float): Reduction coefficient :math:`\in (0, 1)`. |
57
|
|
|
""" |
58
|
|
|
self.n, self.C_a, self.C_r = n, C_a, C_r |
59
|
|
|
if ukwargs: logger.info('Unused arguments: %s' % (ukwargs)) |
60
|
|
|
|
61
|
|
|
def initPopulation(self, task): |
62
|
|
|
r"""Initialize starting population. |
63
|
|
|
|
64
|
|
|
Args: |
65
|
|
|
task (Task): Optimization task. |
66
|
|
|
|
67
|
|
|
Returns: |
68
|
|
|
Tuple[numpy.ndarray, float, Dict[str, Any]]: |
69
|
|
|
1. Initial solution. |
70
|
|
|
2. Initial solution function/fitness value. |
71
|
|
|
3. Additional arguments: |
72
|
|
|
* A (numpy.ndarray): Starting aplitude or search range. |
73
|
|
|
""" |
74
|
|
|
x, A = self.uniform(task.Lower, task.Upper, task.D), task.bRange |
75
|
|
|
x_fit = task.eval(x) |
76
|
|
|
return x, x_fit, {'A': A} |
77
|
|
|
|
78
|
|
|
def runIteration(self, task, x, x_fit, xb, fxb, A, **dparams): |
79
|
|
|
r"""Core function of Bare Bones Fireworks Algorithm. |
80
|
|
|
|
81
|
|
|
Args: |
82
|
|
|
task (Task): Optimization task. |
83
|
|
|
x (numpy.ndarray): Current solution. |
84
|
|
|
x_fit (float): Current solution fitness/function value. |
85
|
|
|
xb (numpy.ndarray): Current best solution. |
86
|
|
|
fxb (float): Current best solution fitness/function value. |
87
|
|
|
A (numpy.ndarray): Serach range. |
88
|
|
|
dparams (Dict[str, Any]): Additional parameters. |
89
|
|
|
|
90
|
|
|
Returns: |
91
|
|
|
Tuple[numpy.ndarray, float, Dict[str, Any]]: |
92
|
|
|
1. New solution. |
93
|
|
|
2. New solution fitness/function value. |
94
|
|
|
3. Additional arguments: |
95
|
|
|
* A (numpy.ndarray): Serach range. |
96
|
|
|
""" |
97
|
|
|
S = apply_along_axis(task.repair, 1, self.uniform(x - A, x + A, [self.n, task.D]), self.Rand) |
98
|
|
|
S_fit = apply_along_axis(task.eval, 1, S) |
99
|
|
|
iS = argmin(S_fit) |
100
|
|
|
if S_fit[iS] < x_fit: x, x_fit, A = S[iS], S_fit[iS], self.C_a * A |
101
|
|
|
else: A = self.C_r * A |
102
|
|
|
return x, x_fit, {'A': A} |
103
|
|
|
|
104
|
|
|
class FireworksAlgorithm(Algorithm): |
105
|
|
|
r"""Implementation of fireworks algorithm. |
106
|
|
|
|
107
|
|
|
Algorithm: |
108
|
|
|
Fireworks Algorithm |
109
|
|
|
|
110
|
|
|
Date: |
111
|
|
|
2018 |
112
|
|
|
|
113
|
|
|
Authors: |
114
|
|
|
Klemen Berkovič |
115
|
|
|
|
116
|
|
|
License: |
117
|
|
|
MIT |
118
|
|
|
|
119
|
|
|
Reference URL: |
120
|
|
|
https://www.springer.com/gp/book/9783662463529 |
121
|
|
|
|
122
|
|
|
Reference paper: |
123
|
|
|
Tan, Ying. "Firework Algorithm: A Novel Swarm Intelligence Optimization Method." (2015). |
124
|
|
|
|
125
|
|
|
Attributes: |
126
|
|
|
Name (List[str]): List of stirngs representing algorithm names. |
127
|
|
|
""" |
128
|
|
|
Name = ['FireworksAlgorithm', 'FWA'] |
129
|
|
|
|
130
|
|
View Code Duplication |
@staticmethod |
|
|
|
|
131
|
|
|
def typeParameters(): return { |
132
|
|
|
'N': lambda x: isinstance(x, int) and x > 0, |
133
|
|
|
'm': lambda x: isinstance(x, int) and x > 0, |
134
|
|
|
'a': lambda x: isinstance(x, (int, float)) and x > 0, |
135
|
|
|
'b': lambda x: isinstance(x, (int, float)) and x > 0, |
136
|
|
|
'epsilon': lambda x: isinstance(x, float) and 0 < x < 1 |
137
|
|
|
} |
138
|
|
|
|
139
|
|
|
def setParameters(self, N=40, m=40, a=1, b=2, A=40, epsilon=1e-31, **ukwargs): |
140
|
|
|
r"""Set the arguments of an algorithm. |
141
|
|
|
|
142
|
|
|
Arguments: |
143
|
|
|
N (int): Number of Fireworks |
144
|
|
|
m (int): Number of sparks |
145
|
|
|
a (int): Limitation of sparks |
146
|
|
|
b (int): Limitation of sparks |
147
|
|
|
A (float): -- |
148
|
|
|
epsilon (float): Small number for non 0 devision |
149
|
|
|
""" |
150
|
|
|
Algorithm.setParameters(self, NP=N, **ukwargs) |
151
|
|
|
self.m, self.a, self.b, self.A, self.epsilon = m, a, b, A, epsilon |
152
|
|
|
if ukwargs: logger.info('Unused arguments: %s' % (ukwargs)) |
153
|
|
|
|
154
|
|
|
def initAmplitude(self, task): |
155
|
|
|
r"""Initialize amplitudes for dimensions. |
156
|
|
|
|
157
|
|
|
Args: |
158
|
|
|
task (Task): Optimization task. |
159
|
|
|
|
160
|
|
|
Returns: |
161
|
|
|
numpy.ndarray[float]: Starting amplitudes. |
162
|
|
|
""" |
163
|
|
|
return fullArray(self.A, task.D) |
164
|
|
|
|
165
|
|
|
def SparsksNo(self, x_f, xw_f, Ss): |
166
|
|
|
r"""Calculate number of sparks based on function value of individual. |
167
|
|
|
|
168
|
|
|
Args: |
169
|
|
|
x_f (float): Individuals function/fitness value. |
170
|
|
|
xw_f (float): Worst individual function/fitness value. |
171
|
|
|
Ss (): TODO |
172
|
|
|
|
173
|
|
|
Returns: |
174
|
|
|
int: Number of sparks that individual will create. |
175
|
|
|
""" |
176
|
|
|
s = self.m * (xw_f - x_f + self.epsilon) / (Ss + self.epsilon) |
177
|
|
|
return round(self.b * self.m) if s > self.b * self.m and self.a < self.b < 1 else round(self.a * self.m) |
178
|
|
|
|
179
|
|
|
def ExplosionAmplitude(self, x_f, xb_f, A, As): |
180
|
|
|
r"""Calculate explosion amplitude. |
181
|
|
|
|
182
|
|
|
Args: |
183
|
|
|
x_f (float): Individuals function/fitness value. |
184
|
|
|
xb_f (float): Best individuals function/fitness value. |
185
|
|
|
A (numpy.ndarray): Amplitudes. |
186
|
|
|
As (): |
187
|
|
|
|
188
|
|
|
Returns: |
189
|
|
|
numpy.ndarray: TODO. |
190
|
|
|
""" |
191
|
|
|
return A * (x_f - xb_f - self.epsilon) / (As + self.epsilon) |
192
|
|
|
|
193
|
|
|
def ExplodeSpark(self, x, A, task): |
194
|
|
|
r"""Explode a spark. |
195
|
|
|
|
196
|
|
|
Args: |
197
|
|
|
x (numpy.ndarray): Individuals creating spark. |
198
|
|
|
A (numpy.ndarray): Amplitude of spark. |
199
|
|
|
task (Task): Optimization task. |
200
|
|
|
|
201
|
|
|
Returns: |
202
|
|
|
numpy.ndarray: Sparks exploded in with specified amplitude. |
203
|
|
|
""" |
204
|
|
|
return self.Mapping(x + self.rand(task.D) * self.uniform(-A, A, task.D), task) |
205
|
|
|
|
206
|
|
|
def GaussianSpark(self, x, task): |
207
|
|
|
r"""Create gaussian spark. |
208
|
|
|
|
209
|
|
|
Args: |
210
|
|
|
x (numpy.ndarray): Individual creating a spark. |
211
|
|
|
task (Task): Optimization task. |
212
|
|
|
|
213
|
|
|
Returns: |
214
|
|
|
numpy.ndarray: Spark exploded based on gaussian amplitude. |
215
|
|
|
""" |
216
|
|
|
return self.Mapping(x + self.rand(task.D) * self.normal(1, 1, task.D), task) |
217
|
|
|
|
218
|
|
View Code Duplication |
def Mapping(self, x, task): |
|
|
|
|
219
|
|
|
r"""Fix value to bounds.. |
220
|
|
|
|
221
|
|
|
Args: |
222
|
|
|
x (numpy.ndarray): Individual to fix. |
223
|
|
|
task (Task): Optimization task. |
224
|
|
|
|
225
|
|
|
Returns: |
226
|
|
|
numpy.ndarray: Individual in search range. |
227
|
|
|
""" |
228
|
|
|
ir = where(x > task.Upper) |
229
|
|
|
x[ir] = task.Lower[ir] + x[ir] % task.bRange[ir] |
230
|
|
|
ir = where(x < task.Lower) |
231
|
|
|
x[ir] = task.Lower[ir] + x[ir] % task.bRange[ir] |
232
|
|
|
return x |
233
|
|
|
|
234
|
|
|
def R(self, x, FW): |
235
|
|
|
r"""Calculate ranges. |
236
|
|
|
|
237
|
|
|
Args: |
238
|
|
|
x (numpy.ndarray): Individual in population. |
239
|
|
|
FW (numpy.ndarray): Current population. |
240
|
|
|
|
241
|
|
|
Returns: |
242
|
|
|
numpy,ndarray[float]: Ranges values. |
243
|
|
|
""" |
244
|
|
|
return sqrt(sum(fabs(x - FW))) |
245
|
|
|
|
246
|
|
|
def p(self, r, Rs): |
247
|
|
|
r"""Calculate p. |
248
|
|
|
|
249
|
|
|
Args: |
250
|
|
|
r (float): Range of individual. |
251
|
|
|
Rs (float): Sum of ranges. |
252
|
|
|
|
253
|
|
|
Returns: |
254
|
|
|
float: p value. |
255
|
|
|
""" |
256
|
|
|
return r / Rs |
257
|
|
|
|
258
|
|
|
def NextGeneration(self, FW, FW_f, FWn, task): |
259
|
|
|
r"""Generate new generation of individuals. |
260
|
|
|
|
261
|
|
|
Args: |
262
|
|
|
FW (numpy.ndarray): Current population. |
263
|
|
|
FW_f (numpy.ndarray[float]): Currents population fitness/function values. |
264
|
|
|
FWn (numpy.ndarray): New population. |
265
|
|
|
task (Task): Optimization task. |
266
|
|
|
|
267
|
|
|
Returns: |
268
|
|
|
Tuple[numpy.ndarray, numpy.ndarray[float]]: |
269
|
|
|
1. New population. |
270
|
|
|
2. New populations fitness/function values. |
271
|
|
|
""" |
272
|
|
|
FWn_f = apply_along_axis(task.eval, 1, FWn) |
273
|
|
|
ib = argmin(FWn_f) |
274
|
|
|
if FWn_f[ib] < FW_f[0]: FW[0], FW_f[0] = FWn[ib], FWn_f[ib] |
275
|
|
|
R = asarray([self.R(FWn[i], FWn) for i in range(len(FWn))]) |
276
|
|
|
Rs = sum(R) |
277
|
|
|
P = asarray([self.p(R[i], Rs) for i in range(len(FWn))]) |
278
|
|
|
isort = argsort(P)[-(self.NP - 1):] |
279
|
|
|
FW[1:], FW_f[1:] = asarray(FWn)[isort], FWn_f[isort] |
280
|
|
|
return FW, FW_f |
281
|
|
|
|
282
|
|
|
def initPopulation(self, task): |
283
|
|
|
r"""Initialize starting population. |
284
|
|
|
|
285
|
|
|
Args: |
286
|
|
|
task (Task): Optimization task. |
287
|
|
|
|
288
|
|
|
Returns: |
289
|
|
|
Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: |
290
|
|
|
1. Initialized population. |
291
|
|
|
2. Initialized populations function/fitness values. |
292
|
|
|
3. Additional arguments: |
293
|
|
|
* Ah (numpy.ndarray): Initialized amplitudes. |
294
|
|
|
|
295
|
|
|
See Also: |
296
|
|
|
* :func:`NiaPy.algorithms.algorithm.Algorithm.initPopulation` |
297
|
|
|
""" |
298
|
|
|
FW, FW_f, d = Algorithm.initPopulation(self, task) |
299
|
|
|
Ah = self.initAmplitude(task) |
300
|
|
|
d.update({'Ah': Ah}) |
301
|
|
|
return FW, FW_f, d |
302
|
|
|
|
303
|
|
|
def runIteration(self, task, FW, FW_f, xb, fxb, Ah, **dparams): |
304
|
|
|
r"""Core function of Fireworks algorithm. |
305
|
|
|
|
306
|
|
|
Args: |
307
|
|
|
task (Task): Optimization task. |
308
|
|
|
FW (numpy.ndarray): Current population. |
309
|
|
|
FW_f (numpy.ndarray[float]): Current populations function/fitness values. |
310
|
|
|
xb (numpy.ndarray): Global best individual. |
311
|
|
|
fxb (float): Global best individuals fitness/function value. |
312
|
|
|
Ah (numpy.ndarray): Current amplitudes. |
313
|
|
|
**dparams (Dict[str, Any)]: Additional arguments |
314
|
|
|
|
315
|
|
|
Returns: |
316
|
|
|
Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: |
317
|
|
|
1. Initialized population. |
318
|
|
|
2. Initialized populations function/fitness values. |
319
|
|
|
3. Additional arguments: |
320
|
|
|
* Ah (numpy.ndarray): Initialized amplitudes. |
321
|
|
|
|
322
|
|
|
See Also: |
323
|
|
|
* :func:`FireworksAlgorithm.SparsksNo`. |
324
|
|
|
* :func:`FireworksAlgorithm.ExplosionAmplitude` |
325
|
|
|
* :func:`FireworksAlgorithm.ExplodeSpark` |
326
|
|
|
* :func:`FireworksAlgorithm.GaussianSpark` |
327
|
|
|
* :func:`FireworksAlgorithm.NextGeneration` |
328
|
|
|
""" |
329
|
|
|
iw, ib = argmax(FW_f), 0 |
330
|
|
|
Ss, As = sum(FW_f[iw] - FW_f), sum(FW_f - FW_f[ib]) |
331
|
|
|
S = [self.SparsksNo(FW_f[i], FW_f[iw], Ss) for i in range(self.NP)] |
332
|
|
|
A = [self.ExplosionAmplitude(FW_f[i], FW_f[ib], Ah, As) for i in range(self.NP)] |
333
|
|
|
FWn = [self.ExplodeSpark(FW[i], A[i], task) for i in range(self.NP) for _ in range(S[i])] |
334
|
|
|
for i in range(self.m): FWn.append(self.GaussianSpark(self.randint(self.NP), task)) |
335
|
|
|
FW, FW_f = self.NextGeneration(FW, FW_f, FWn, task) |
336
|
|
|
return FW, FW_f, {'Ah': Ah} |
337
|
|
|
|
338
|
|
|
class EnhancedFireworksAlgorithm(FireworksAlgorithm): |
339
|
|
|
r"""Implementation of enganced fireworks algorithm. |
340
|
|
|
|
341
|
|
|
Algorithm: |
342
|
|
|
Enhanced Fireworks Algorithm |
343
|
|
|
|
344
|
|
|
Date: |
345
|
|
|
2018 |
346
|
|
|
|
347
|
|
|
Authors: |
348
|
|
|
Klemen Berkovič |
349
|
|
|
|
350
|
|
|
License: |
351
|
|
|
MIT |
352
|
|
|
|
353
|
|
|
Reference URL: |
354
|
|
|
https://ieeexplore.ieee.org/document/6557813/ |
355
|
|
|
|
356
|
|
|
Reference paper: |
357
|
|
|
S. Zheng, A. Janecek and Y. Tan, "Enhanced Fireworks Algorithm," 2013 IEEE Congress on Evolutionary Computation, Cancun, 2013, pp. 2069-2077. doi: 10.1109/CEC.2013.6557813 |
358
|
|
|
|
359
|
|
|
Attributes: |
360
|
|
|
Name (List[str]): List of strings representing algorithm names. |
361
|
|
|
Ainit (float): TODO |
362
|
|
|
Afinal (float): TODO |
363
|
|
|
""" |
364
|
|
|
Name = ['EnhancedFireworksAlgorithm', 'EFWA'] |
365
|
|
|
|
366
|
|
|
@staticmethod |
367
|
|
|
def typeParameters(): |
368
|
|
|
r"""Get dictionary with functions for checking values of parameters. |
369
|
|
|
|
370
|
|
|
Returns: |
371
|
|
|
Dict[str, Callable]: |
372
|
|
|
* Ainit (Callable[[Union[int, float]], bool]): TODO |
373
|
|
|
* Afinal (Callable[[Union[int, float]], bool]): TODO |
374
|
|
|
|
375
|
|
|
See Also: |
376
|
|
|
* :func:`FireworksAlgorithm.typeParameters` |
377
|
|
|
""" |
378
|
|
|
d = FireworksAlgorithm.typeParameters() |
379
|
|
|
d['Ainit'] = lambda x: isinstance(x, (float, int)) and x > 0 |
380
|
|
|
d['Afinal'] = lambda x: isinstance(x, (float, int)) and x > 0 |
381
|
|
|
return d |
382
|
|
|
|
383
|
|
|
def setParameters(self, Ainit=20, Afinal=5, **ukwargs): |
384
|
|
|
r"""Set EnhancedFireworksAlgorithm algorithms core parameters. |
385
|
|
|
|
386
|
|
|
Args: |
387
|
|
|
Ainit (float): TODO |
388
|
|
|
Afinal (float): TODO |
389
|
|
|
**ukwargs (Dict[str, Any]): Additional arguments. |
390
|
|
|
|
391
|
|
|
See Also: |
392
|
|
|
* :func:`FireworksAlgorithm.setParameters` |
393
|
|
|
""" |
394
|
|
|
FireworksAlgorithm.setParameters(self, **ukwargs) |
395
|
|
|
self.Ainit, self.Afinal = Ainit, Afinal |
396
|
|
|
|
397
|
|
|
def initRanges(self, task): |
398
|
|
|
r"""Initialize ranges. |
399
|
|
|
|
400
|
|
|
Args: |
401
|
|
|
task (Task): Optimization task. |
402
|
|
|
|
403
|
|
|
Returns: |
404
|
|
|
Tuple[numpy.ndarray[float], numpy.ndarray[float], numpy.ndarray[float]]: |
405
|
|
|
1. Initial amplitude values over dimensions. |
406
|
|
|
2. Final amplitude values over dimensions. |
407
|
|
|
3. uAmin. |
408
|
|
|
""" |
409
|
|
|
Ainit, Afinal = fullArray(self.Ainit, task.D), fullArray(self.Afinal, task.D) |
410
|
|
|
return Ainit, Afinal, self.uAmin(Ainit, Afinal, task) |
411
|
|
|
|
412
|
|
|
def uAmin(self, Ainit, Afinal, task): |
413
|
|
|
r"""Calculate the value of `uAmin`. |
414
|
|
|
|
415
|
|
|
Args: |
416
|
|
|
Ainit (numpy.ndarray[float]): Initial amplitude values over dimensions. |
417
|
|
|
Afinal (numpy.ndarray[float]): Final amplitude values over dimensions. |
418
|
|
|
task (Task): Optimization task. |
419
|
|
|
|
420
|
|
|
Returns: |
421
|
|
|
numpy.ndarray[float]: uAmin. |
422
|
|
|
""" |
423
|
|
|
return Ainit - sqrt(task.Evals * (2 * task.nFES - task.Evals)) * (Ainit - Afinal) / task.nFES |
424
|
|
|
|
425
|
|
|
def ExplosionAmplitude(self, x_f, xb_f, Ah, As, A_min=None): |
426
|
|
|
r"""Calculate explosion amplitude. |
427
|
|
|
|
428
|
|
|
Args: |
429
|
|
|
x_f (float): Individuals function/fitness value. |
430
|
|
|
xb_f (float): Best individual function/fitness value. |
431
|
|
|
Ah (numpy.ndarray): |
432
|
|
|
As (): TODO. |
433
|
|
|
A_min (Optional[numpy.ndarray]): Minimal amplitude values. |
434
|
|
|
task (Task): Optimization task. |
435
|
|
|
|
436
|
|
|
Returns: |
437
|
|
|
numpy.ndarray: New amplitude. |
438
|
|
|
""" |
439
|
|
|
A = FireworksAlgorithm.ExplosionAmplitude(self, x_f, xb_f, Ah, As) |
440
|
|
|
ifix = where(A < A_min) |
441
|
|
|
A[ifix] = A_min[ifix] |
442
|
|
|
return A |
443
|
|
|
|
444
|
|
|
def GaussianSpark(self, x, xb, task): |
445
|
|
|
r"""Create new individual. |
446
|
|
|
|
447
|
|
|
Args: |
448
|
|
|
x (numpy.ndarray): |
449
|
|
|
xb (numpy.ndarray): |
450
|
|
|
task (Task): Optimization task. |
451
|
|
|
|
452
|
|
|
Returns: |
453
|
|
|
numpy.ndarray: New individual generated by gaussian noise. |
454
|
|
|
""" |
455
|
|
|
return self.Mapping(x + self.rand(task.D) * (xb - x) * self.normal(1, 1, task.D), task) |
456
|
|
|
|
457
|
|
|
def NextGeneration(self, FW, FW_f, FWn, task): |
458
|
|
|
r"""Generate new population. |
459
|
|
|
|
460
|
|
|
Args: |
461
|
|
|
FW (numpy.ndarray): Current population. |
462
|
|
|
FW_f (numpy.ndarray[float]): Current populations fitness/function values. |
463
|
|
|
FWn (numpy.ndarray): New population. |
464
|
|
|
task (Task): Optimization task. |
465
|
|
|
|
466
|
|
|
Returns: |
467
|
|
|
Tuple[numpy.ndarray, numpy.ndarray[float]]: |
468
|
|
|
1. New population. |
469
|
|
|
2. New populations fitness/function values. |
470
|
|
|
""" |
471
|
|
|
FWn_f = apply_along_axis(task.eval, 1, FWn) |
472
|
|
|
ib = argmin(FWn_f) |
473
|
|
|
if FWn_f[ib] < FW_f[0]: FW[0], FW_f[0] = FWn[ib], FWn_f[ib] |
474
|
|
|
for i in range(1, self.NP): |
475
|
|
|
r = self.randint(len(FWn)) |
476
|
|
|
if FWn_f[r] < FW_f[i]: FW[i], FW_f[i] = FWn[r], FWn_f[r] |
477
|
|
|
return FW, FW_f |
478
|
|
|
|
479
|
|
|
def initPopulation(self, task): |
480
|
|
|
r"""Initialize population. |
481
|
|
|
|
482
|
|
|
Args: |
483
|
|
|
task (Task): Optimization task. |
484
|
|
|
|
485
|
|
|
Returns: |
486
|
|
|
Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: |
487
|
|
|
1. Initial population. |
488
|
|
|
2. Initial populations fitness/function values. |
489
|
|
|
3. Additional arguments: |
490
|
|
|
* Ainit (numpy.ndarray): Initial amplitude values. |
491
|
|
|
* Afinal (numpy.ndarray): Final amplitude values. |
492
|
|
|
* A_min (numpy.ndarray): Minimal amplitude values. |
493
|
|
|
|
494
|
|
|
See Also: |
495
|
|
|
* :func:`FireworksAlgorithm.initPopulation` |
496
|
|
|
""" |
497
|
|
|
FW, FW_f, d = FireworksAlgorithm.initPopulation(self, task) |
498
|
|
|
Ainit, Afinal, A_min = self.initRanges(task) |
499
|
|
|
d.update({'Ainit': Ainit, 'Afinal': Afinal, 'A_min': A_min}) |
500
|
|
|
return FW, FW_f, d |
501
|
|
|
|
502
|
|
|
def runIteration(self, task, FW, FW_f, xb, fxb, Ah, Ainit, Afinal, A_min, **dparams): |
503
|
|
|
r"""Core function of EnhancedFireworksAlgorithm algorithm. |
504
|
|
|
|
505
|
|
|
Args: |
506
|
|
|
task (Task): Optimization task. |
507
|
|
|
FW (numpy.ndarray): Current population. |
508
|
|
|
FW_f (numpy.ndarray[float]): Current populations fitness/function values. |
509
|
|
|
xb (numpy.ndarray): Global best individual. |
510
|
|
|
fxb (float): Global best individuals function/fitness value. |
511
|
|
|
Ah (numpy.ndarray[float]): Current amplitude. |
512
|
|
|
Ainit (numpy.ndarray[float]): Initial amplitude. |
513
|
|
|
Afinal (numpy.ndarray[float]): Final amplitude values. |
514
|
|
|
A_min (numpy.ndarray[float]): Minial amplitude values. |
515
|
|
|
**dparams (Dict[str, Any]): Additional arguments. |
516
|
|
|
|
517
|
|
|
Returns: |
518
|
|
|
Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: |
519
|
|
|
1. Initial population. |
520
|
|
|
2. Initial populations fitness/function values. |
521
|
|
|
3. Additional arguments: |
522
|
|
|
* Ainit (numpy.ndarray): Initial amplitude values. |
523
|
|
|
* Afinal (numpy.ndarray): Final amplitude values. |
524
|
|
|
* A_min (numpy.ndarray): Minimal amplitude values. |
525
|
|
|
""" |
526
|
|
|
iw, ib = argmax(FW_f), 0 |
527
|
|
|
Ss, As = sum(FW_f[iw] - FW_f), sum(FW_f - FW_f[ib]) |
528
|
|
|
S = [self.SparsksNo(FW_f[i], FW_f[iw], Ss) for i in range(self.NP)] |
529
|
|
|
A = [self.ExplosionAmplitude(FW_f[i], FW_f[ib], Ah, As, A_min) for i in range(self.NP)] |
530
|
|
|
A_min = self.uAmin(Ainit, Afinal, task) |
531
|
|
|
FWn = [self.ExplodeSpark(FW[i], A[i], task) for i in range(self.NP) for _ in range(S[i])] |
532
|
|
|
for i in range(self.m): FWn.append(self.GaussianSpark(self.randint(self.NP), FW[ib], task)) |
533
|
|
|
FW, FW_f = self.NextGeneration(FW, FW_f, FWn, task) |
534
|
|
|
return FW, FW_f, {'Ah': Ah, 'Ainit': Ainit, 'Afinal': Afinal, 'A_min': A_min} |
535
|
|
|
|
536
|
|
|
class DynamicFireworksAlgorithmGauss(EnhancedFireworksAlgorithm): |
537
|
|
|
r"""Implementation of dynamic fireworks algorithm. |
538
|
|
|
|
539
|
|
|
Algorithm: |
540
|
|
|
Dynamic Fireworks Algorithm |
541
|
|
|
|
542
|
|
|
Date: |
543
|
|
|
2018 |
544
|
|
|
|
545
|
|
|
Authors: |
546
|
|
|
Klemen Berkovič |
547
|
|
|
|
548
|
|
|
License: |
549
|
|
|
MIT |
550
|
|
|
|
551
|
|
|
Reference URL: |
552
|
|
|
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6900485&isnumber=6900223 |
553
|
|
|
|
554
|
|
|
Reference paper: |
555
|
|
|
S. Zheng, A. Janecek, J. Li and Y. Tan, "Dynamic search in fireworks algorithm," 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, 2014, pp. 3222-3229. doi: 10.1109/CEC.2014.6900485 |
556
|
|
|
|
557
|
|
|
Attributes: |
558
|
|
|
Name (List[str]): List of strings representing algorithm names. |
559
|
|
|
A_cf (Union[float, int]): TODO |
560
|
|
|
C_a (Union[float, int]): TODO |
561
|
|
|
C_r (Union[float, int]): TODO |
562
|
|
|
epsilon (Union[float, int]): TODO |
563
|
|
|
""" |
564
|
|
|
Name = ['DynamicFireworksAlgorithmGauss', 'dynFWAG'] |
565
|
|
|
|
566
|
|
View Code Duplication |
@staticmethod |
|
|
|
|
567
|
|
|
def typeParameters(): |
568
|
|
|
r"""Get dictionary with functions for checking values of parameters. |
569
|
|
|
|
570
|
|
|
Returns: |
571
|
|
|
Dict[str, Callable]: |
572
|
|
|
* A_cr (Callable[[Union[float, int], bool]): TODo |
573
|
|
|
|
574
|
|
|
See Also: |
575
|
|
|
* :func:`FireworksAlgorithm.typeParameters` |
576
|
|
|
""" |
577
|
|
|
d = FireworksAlgorithm.typeParameters() |
578
|
|
|
d['A_cf'] = lambda x: isinstance(x, (float, int)) and x > 0 |
579
|
|
|
d['C_a'] = lambda x: isinstance(x, (float, int)) and x > 1 |
580
|
|
|
d['C_r'] = lambda x: isinstance(x, (float, int)) and 0 < x < 1 |
581
|
|
|
d['epsilon'] = lambda x: isinstance(x, (float, int)) and 0 < x < 1 |
582
|
|
|
return d |
583
|
|
|
|
584
|
|
|
def setParameters(self, A_cf=20, C_a=1.2, C_r=0.9, epsilon=1e-8, **ukwargs): |
585
|
|
|
r"""Set core arguments of DynamicFireworksAlgorithmGauss. |
586
|
|
|
|
587
|
|
|
Args: |
588
|
|
|
A_cf (Union[int, float]): |
589
|
|
|
C_a (Union[int, float]): |
590
|
|
|
C_r (Union[int, float]): |
591
|
|
|
epsilon (Union[int, float]): |
592
|
|
|
**ukwargs (Dict[str, Any]): Additional arguments. |
593
|
|
|
|
594
|
|
|
See Also: |
595
|
|
|
* :func:`FireworksAlgorithm.setParameters` |
596
|
|
|
""" |
597
|
|
|
FireworksAlgorithm.setParameters(self, **ukwargs) |
598
|
|
|
self.A_cf, self.C_a, self.C_r, self.epsilon = A_cf, C_a, C_r, epsilon |
599
|
|
|
|
600
|
|
|
def initAmplitude(self, task): |
601
|
|
|
r"""Initialize amplitude. |
602
|
|
|
|
603
|
|
|
Args: |
604
|
|
|
task (Task): Optimization task. |
605
|
|
|
|
606
|
|
|
Returns: |
607
|
|
|
Tuple[numpy.ndarray, numpy.ndarray]: |
608
|
|
|
1. TODO |
609
|
|
|
""" |
610
|
|
|
return FireworksAlgorithm.initAmplitude(self, task), task.bRange |
611
|
|
|
|
612
|
|
|
def Mapping(self, x, task): |
613
|
|
|
r"""Fix out of bound solution/individual. |
614
|
|
|
|
615
|
|
|
Args: |
616
|
|
|
x (numpy.ndarray): Individual. |
617
|
|
|
task (Task): Optimization task. |
618
|
|
|
|
619
|
|
|
Returns: |
620
|
|
|
numpy.ndarray: Fixed individual. |
621
|
|
|
""" |
622
|
|
|
ir = where(x > task.Upper) |
623
|
|
|
x[ir] = self.uniform(task.Lower[ir], task.Upper[ir]) |
624
|
|
|
ir = where(x < task.Lower) |
625
|
|
|
x[ir] = self.uniform(task.Lower[ir], task.Upper[ir]) |
626
|
|
|
return x |
627
|
|
|
|
628
|
|
|
def repair(self, x, d, epsilon): |
629
|
|
|
r"""Repair solution. |
630
|
|
|
|
631
|
|
|
Args: |
632
|
|
|
x (numpy.ndarray): Individual. |
633
|
|
|
d (numpy.ndarray): Default value. |
634
|
|
|
epsilon (float): Limiting value. |
635
|
|
|
|
636
|
|
|
Returns: |
637
|
|
|
numpy.ndarray: Fixed solution. |
638
|
|
|
""" |
639
|
|
|
ir = where(x <= epsilon) |
640
|
|
|
x[ir] = d[ir] |
641
|
|
|
return x |
642
|
|
|
|
643
|
|
|
def NextGeneration(self, FW, FW_f, FWn, task): |
644
|
|
|
r"""TODO. |
645
|
|
|
|
646
|
|
|
Args: |
647
|
|
|
FW (numpy.ndarray): Current population. |
648
|
|
|
FW_f (numpy.ndarray[float]): Current populations function/fitness values. |
649
|
|
|
FWn (numpy.ndarray): New population. |
650
|
|
|
task (Task): Optimization task. |
651
|
|
|
|
652
|
|
|
Returns: |
653
|
|
|
Tuple[numpy.ndarray, numpy.ndarray[float]]: |
654
|
|
|
1. New population. |
655
|
|
|
2. New populations function/fitness values. |
656
|
|
|
""" |
657
|
|
|
FWn_f = apply_along_axis(task.eval, 1, FWn) |
658
|
|
|
ib = argmin(FWn_f) |
659
|
|
|
for i, f in enumerate(FW_f): |
660
|
|
|
r = self.randint(len(FWn)) |
661
|
|
|
if FWn_f[r] < f: FW[i], FW_f[i] = FWn[r], FWn_f[r] |
662
|
|
|
FW[0], FW_f[0] = FWn[ib], FWn_f[ib] |
663
|
|
|
return FW, FW_f |
664
|
|
|
|
665
|
|
|
def uCF(self, xnb, xcb, xcb_f, xb, xb_f, Acf, task): |
666
|
|
|
r"""TODO. |
667
|
|
|
|
668
|
|
|
Args: |
669
|
|
|
xnb: |
670
|
|
|
xcb: |
671
|
|
|
xcb_f: |
672
|
|
|
xb: |
673
|
|
|
xb_f: |
674
|
|
|
Acf: |
675
|
|
|
task (Task): Optimization task. |
676
|
|
|
|
677
|
|
|
Returns: |
678
|
|
|
Tuple[]: |
679
|
|
|
1. TODO |
680
|
|
|
""" |
681
|
|
|
xnb_f = apply_along_axis(task.eval, 1, xnb) |
682
|
|
|
ib_f = argmin(xnb_f) |
683
|
|
|
if xnb_f[ib_f] <= xb_f: xb, xb_f = xnb[ib_f], xnb_f[ib_f] |
684
|
|
|
Acf = self.repair(Acf, task.bRange, self.epsilon) |
685
|
|
|
if xb_f >= xcb_f: xb, xb_f, Acf = xcb, xcb_f, Acf * self.C_a |
686
|
|
|
else: Acf = Acf * self.C_r |
687
|
|
|
return xb, xb_f, Acf |
688
|
|
|
|
689
|
|
|
def ExplosionAmplitude(self, x_f, xb_f, Ah, As, A_min=None): |
690
|
|
|
return FireworksAlgorithm.ExplosionAmplitude(self, x_f, xb_f, Ah, As) |
691
|
|
|
|
692
|
|
|
def initPopulation(self, task): |
693
|
|
|
r"""Initialize population. |
694
|
|
|
|
695
|
|
|
Args: |
696
|
|
|
task (Task): Optimization task. |
697
|
|
|
|
698
|
|
|
Returns: |
699
|
|
|
Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: |
700
|
|
|
1. Initialized population. |
701
|
|
|
2. Initialized population function/fitness values. |
702
|
|
|
3. Additional arguments: |
703
|
|
|
* Ah (): TODO |
704
|
|
|
* Ab (): TODO |
705
|
|
|
""" |
706
|
|
|
FW, FW_f, _ = Algorithm.initPopulation(self, task) |
707
|
|
|
Ah, Ab = self.initAmplitude(task) |
708
|
|
|
return FW, FW_f, {'Ah': Ah, 'Ab': Ab} |
709
|
|
|
|
710
|
|
|
def runIteration(self, task, FW, FW_f, xb, fxb, Ah, Ab, **dparams): |
711
|
|
|
r"""Core function of DynamicFireworksAlgorithmGauss algorithm. |
712
|
|
|
|
713
|
|
|
Args: |
714
|
|
|
task (Task): Optimization task. |
715
|
|
|
FW (numpy.ndarray): Current population. |
716
|
|
|
FW_f (numpy.ndarray[float]): Current populations function/fitness values. |
717
|
|
|
xb (numpy.ndarray): Global best individual. |
718
|
|
|
fxb (float): Global best fitness/function value. |
719
|
|
|
Ah (): TODO |
720
|
|
|
Ab (): TODO |
721
|
|
|
**dparams (Dict[str, Any]): Additional arguments. |
722
|
|
|
|
723
|
|
|
Returns: |
724
|
|
|
Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: |
725
|
|
|
1. New population. |
726
|
|
|
2. New populations fitness/function values. |
727
|
|
|
3. Additional arguments: |
728
|
|
|
* Ah (): TODO |
729
|
|
|
* Ab (): TODO |
730
|
|
|
""" |
731
|
|
|
iw, ib = argmax(FW_f), argmin(FW_f) |
732
|
|
|
Ss, As = sum(FW_f[iw] - FW_f), sum(FW_f - FW_f[ib]) |
733
|
|
|
S, sb = [self.SparsksNo(FW_f[i], FW_f[iw], Ss) for i in range(len(FW))], self.SparsksNo(fxb, FW_f[iw], Ss) |
734
|
|
|
A = [self.ExplosionAmplitude(FW_f[i], FW_f[ib], Ah, As) for i in range(len(FW))] |
735
|
|
|
FWn, xnb = [self.ExplodeSpark(FW[i], A[i], task) for i in range(self.NP) for _ in range(S[i])], [self.ExplodeSpark(xb, Ab, task) for _ in range(sb)] |
736
|
|
|
for i in range(self.m): FWn.append(self.GaussianSpark(self.randint(self.NP), FW[ib], task)) |
737
|
|
|
FW, FW_f = self.NextGeneration(FW, FW_f, FWn, task) |
738
|
|
|
iw, ib = argmax(FW_f), 0 |
739
|
|
|
_, _, Ab = self.uCF(xnb, FW[ib], FW_f[ib], xb, fxb, Ab, task) |
740
|
|
|
return FW, FW_f, {'Ah': Ah, 'Ab': Ab} |
741
|
|
|
|
742
|
|
|
class DynamicFireworksAlgorithm(DynamicFireworksAlgorithmGauss): |
743
|
|
|
r"""Implementation of dynamic fireworks algorithm. |
744
|
|
|
|
745
|
|
|
Algorithm: |
746
|
|
|
Dynamic Fireworks Algorithm |
747
|
|
|
|
748
|
|
|
Date: |
749
|
|
|
2018 |
750
|
|
|
|
751
|
|
|
Authors: |
752
|
|
|
Klemen Berkovič |
753
|
|
|
|
754
|
|
|
License: |
755
|
|
|
MIT |
756
|
|
|
|
757
|
|
|
Reference URL: |
758
|
|
|
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6900485&isnumber=6900223 |
759
|
|
|
|
760
|
|
|
Reference paper: |
761
|
|
|
S. Zheng, A. Janecek, J. Li and Y. Tan, "Dynamic search in fireworks algorithm," 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, 2014, pp. 3222-3229. doi: 10.1109/CEC.2014.6900485 |
762
|
|
|
|
763
|
|
|
Attributes: |
764
|
|
|
Name (List[str]): List of strings representing algorithm name. |
765
|
|
|
|
766
|
|
|
See Also: |
767
|
|
|
* :class:`NiaPy.algorithms.basic.DynamicFireworksAlgorithmGauss` |
768
|
|
|
""" |
769
|
|
|
Name = ['DynamicFireworksAlgorithm', 'dynFWA'] |
770
|
|
|
|
771
|
|
|
def runIteration(self, task, FW, FW_f, xb, fxb, Ah, Ab, **dparams): |
772
|
|
|
r"""Core function of Dynamic Fireworks Algorithm. |
773
|
|
|
|
774
|
|
|
Args: |
775
|
|
|
task (Task): Optimization task |
776
|
|
|
FW (numpy.ndarray): Current population |
777
|
|
|
FW_f (numpy.ndarray[float]): Current population fitness/function values |
778
|
|
|
xb (numpy.ndarray): Current best solution |
779
|
|
|
fxb (float): Current best solution's fitness/function value |
780
|
|
|
Ah (): TODO |
781
|
|
|
Ab (): TODO |
782
|
|
|
**dparams: |
783
|
|
|
|
784
|
|
|
Returns: |
785
|
|
|
Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: |
786
|
|
|
1. New population. |
787
|
|
|
2. New population function/fitness values. |
788
|
|
|
3. Additional arguments: |
789
|
|
|
* Ah (): TODO |
790
|
|
|
* Ab (): TODO |
791
|
|
|
""" |
792
|
|
|
iw, ib = argmax(FW_f), argmin(FW_f) |
793
|
|
|
Ss, As = sum(FW_f[iw] - FW_f), sum(FW_f - FW_f[ib]) |
794
|
|
|
S, sb = [self.SparsksNo(FW_f[i], FW_f[iw], Ss) for i in range(len(FW))], self.SparsksNo(fxb, FW_f[iw], Ss) |
795
|
|
|
A = [self.ExplosionAmplitude(FW_f[i], FW_f[ib], Ah, As) for i in range(len(FW))] |
796
|
|
|
FWn, xnb = [self.ExplodeSpark(FW[i], A[i], task) for i in range(self.NP) for _ in range(S[i])], [self.ExplodeSpark(xb, Ab, task) for _ in range(sb)] |
797
|
|
|
FW, FW_f = self.NextGeneration(FW, FW_f, FWn, task) |
798
|
|
|
iw, ib = argmax(FW_f), 0 |
799
|
|
|
_, _, Ab = self.uCF(xnb, FW[ib], FW_f[ib], xb, fxb, Ab, task) |
800
|
|
|
return FW, FW_f, {'Ah': Ah, 'Ab': Ab} |
801
|
|
|
|
802
|
|
|
# vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3 |
803
|
|
|
|