1
|
|
|
# encoding=utf8 |
2
|
|
|
import logging |
3
|
|
|
|
4
|
|
|
from scipy.special import gamma as Gamma |
5
|
|
|
from numpy import where, sin, fabs, pi, zeros |
6
|
|
|
|
7
|
|
|
from NiaPy.algorithms.algorithm import Algorithm |
8
|
|
|
|
9
|
|
|
logging.basicConfig() |
10
|
|
|
logger = logging.getLogger('NiaPy.algorithms.basic') |
11
|
|
|
logger.setLevel('INFO') |
12
|
|
|
|
13
|
|
|
__all__ = ['FlowerPollinationAlgorithm'] |
14
|
|
|
|
15
|
|
|
class FlowerPollinationAlgorithm(Algorithm): |
16
|
|
|
r"""Implementation of Flower Pollination algorithm. |
17
|
|
|
|
18
|
|
|
Algorithm: |
19
|
|
|
Flower Pollination algorithm |
20
|
|
|
|
21
|
|
|
Date: |
22
|
|
|
2018 |
23
|
|
|
|
24
|
|
|
Authors: |
25
|
|
|
Dusan Fister, Iztok Fister Jr. and Klemen Berkovič |
26
|
|
|
|
27
|
|
|
License: |
28
|
|
|
MIT |
29
|
|
|
|
30
|
|
|
Reference paper: |
31
|
|
|
Yang, Xin-She. "Flower pollination algorithm for global optimization. International conference on unconventional computing and natural computation. Springer, Berlin, Heidelberg, 2012. |
32
|
|
|
|
33
|
|
|
References URL: |
34
|
|
|
Implementation is based on the following MATLAB code: https://www.mathworks.com/matlabcentral/fileexchange/45112-flower-pollination-algorithm?requestedDomain=true |
35
|
|
|
|
36
|
|
|
Attributes: |
37
|
|
|
Name (List[str]): List of strings representing algorithm names. |
38
|
|
|
p (float): probability switch. |
39
|
|
|
beta (float): Shape of the gamma distribution (should be greater than zero). |
40
|
|
|
|
41
|
|
|
See Also: |
42
|
|
|
* :class:`NiaPy.algorithms.Algorithm` |
43
|
|
|
""" |
44
|
|
|
Name = ['FlowerPollinationAlgorithm', 'FPA'] |
45
|
|
|
|
46
|
|
|
@staticmethod |
47
|
|
|
def algorithmInfo(): |
48
|
|
|
r"""Get default information of algorithm. |
49
|
|
|
|
50
|
|
|
Returns: |
51
|
|
|
str: Basic information. |
52
|
|
|
|
53
|
|
|
See Also: |
54
|
|
|
* :func:`NiaPy.algorithms.Algorithm.algorithmInfo` |
55
|
|
|
""" |
56
|
|
|
return r"""Yang, Xin-She. "Flower pollination algorithm for global optimization. International conference on unconventional computing and natural computation. Springer, Berlin, Heidelberg, 2012.""" |
57
|
|
|
|
58
|
|
View Code Duplication |
@staticmethod |
|
|
|
|
59
|
|
|
def typeParameters(): |
60
|
|
|
r"""TODO. |
61
|
|
|
|
62
|
|
|
Returns: |
63
|
|
|
Dict[str, Callable]: |
64
|
|
|
* p (function): TODO |
65
|
|
|
* beta (function): TODO |
66
|
|
|
|
67
|
|
|
See Also: |
68
|
|
|
* :func:`NiaPy.algorithms.Algorithm.typeParameters` |
69
|
|
|
""" |
70
|
|
|
d = Algorithm.typeParameters() |
71
|
|
|
d.update({ |
72
|
|
|
'p': lambda x: isinstance(x, float) and 0 <= x <= 1, |
73
|
|
|
'beta': lambda x: isinstance(x, (float, int)) and x > 0, |
74
|
|
|
}) |
75
|
|
|
return d |
76
|
|
|
|
77
|
|
|
def setParameters(self, NP=25, p=0.35, beta=1.5, **ukwargs): |
78
|
|
|
r"""Set core parameters of FlowerPollinationAlgorithm algorithm. |
79
|
|
|
|
80
|
|
|
Arguments: |
81
|
|
|
NP (int): Population size. |
82
|
|
|
p (float): Probability switch. |
83
|
|
|
beta (float): Shape of the gamma distribution (should be greater than zero). |
84
|
|
|
|
85
|
|
|
See Also: |
86
|
|
|
* :func:`NiaPy.algorithms.Algorithm.setParameters` |
87
|
|
|
""" |
88
|
|
|
Algorithm.setParameters(self, NP=NP, **ukwargs) |
89
|
|
|
self.p, self.beta = p, beta |
90
|
|
|
self.S = zeros((NP, 10)) |
91
|
|
|
|
92
|
|
View Code Duplication |
def repair(self, x, task): |
|
|
|
|
93
|
|
|
r"""Repair solution to search space. |
94
|
|
|
|
95
|
|
|
Args: |
96
|
|
|
x (numpy.ndarray): Solution to fix. |
97
|
|
|
task (Task): Optimization task. |
98
|
|
|
|
99
|
|
|
Returns: |
100
|
|
|
numpy.ndarray: fixed solution. |
101
|
|
|
""" |
102
|
|
|
ir = where(x > task.Upper) |
103
|
|
|
x[ir] = task.Lower[ir] + x[ir] % task.bRange[ir] |
104
|
|
|
ir = where(x < task.Lower) |
105
|
|
|
x[ir] = task.Lower[ir] + x[ir] % task.bRange[ir] |
106
|
|
|
return x |
107
|
|
|
|
108
|
|
|
def levy(self, D): |
109
|
|
|
r"""Levy function. |
110
|
|
|
|
111
|
|
|
Returns: |
112
|
|
|
float: Next Levy number. |
113
|
|
|
""" |
114
|
|
|
sigma = (Gamma(1 + self.beta) * sin(pi * self.beta / 2) / (Gamma((1 + self.beta) / 2) * self.beta * 2 ** ((self.beta - 1) / 2))) ** (1 / self.beta) |
115
|
|
|
return 0.01 * (self.normal(0, 1, D) * sigma / fabs(self.normal(0, 1, D)) ** (1 / self.beta)) |
116
|
|
|
|
117
|
|
|
def initPopulation(self, task): |
118
|
|
|
pop, fpop, d = Algorithm.initPopulation(self, task) |
119
|
|
|
d.update({'S': zeros((self.NP, task.D))}) |
120
|
|
|
return pop, fpop, d |
121
|
|
|
|
122
|
|
|
def runIteration(self, task, Sol, Sol_f, xb, fxb, S, **dparams): |
123
|
|
|
r"""Core function of FlowerPollinationAlgorithm algorithm. |
124
|
|
|
|
125
|
|
|
Args: |
126
|
|
|
task (Task): Optimization task. |
127
|
|
|
Sol (numpy.ndarray): Current population. |
128
|
|
|
Sol_f (numpy.ndarray): Current population fitness/function values. |
129
|
|
|
xb (numpy.ndarray): Global best solution. |
130
|
|
|
fxb (float): Global best solution function/fitness value. |
131
|
|
|
**dparams (Dict[str, Any]): Additional arguments. |
132
|
|
|
|
133
|
|
|
Returns: |
134
|
|
|
Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, float, Dict[str, Any]]: |
135
|
|
|
1. New population. |
136
|
|
|
2. New populations fitness/function values. |
137
|
|
|
3. New global best solution. |
138
|
|
|
4. New global best solution fitness/objective value. |
139
|
|
|
5. Additional arguments. |
140
|
|
|
""" |
141
|
|
|
for i in range(self.NP): |
142
|
|
|
if self.uniform(0, 1) > self.p: S[i] += self.levy(task.D) * (Sol[i] - xb) |
143
|
|
|
else: |
144
|
|
|
JK = self.Rand.permutation(self.NP) |
145
|
|
|
S[i] += self.uniform(0, 1) * (Sol[JK[0]] - Sol[JK[1]]) |
146
|
|
|
S[i] = self.repair(S[i], task) |
147
|
|
|
f_i = task.eval(S[i]) |
148
|
|
|
if f_i <= Sol_f[i]: Sol[i], Sol_f[i] = S[i], f_i |
149
|
|
|
if f_i <= fxb: xb, fxb = S[i].copy(), f_i |
150
|
|
|
return Sol, Sol_f, xb, fxb, {'S': S} |
151
|
|
|
|
152
|
|
|
# vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3 |
153
|
|
|
|