| 1 |  |  | # encoding=utf8 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 2 |  |  | import logging | 
            
                                                                                                            
                            
            
                                    
            
            
                | 3 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 4 |  |  | from scipy.special import gamma as Gamma | 
            
                                                                                                            
                            
            
                                    
            
            
                | 5 |  |  | from numpy import where, sin, fabs, pi, zeros | 
            
                                                                                                            
                            
            
                                    
            
            
                | 6 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 7 |  |  | from NiaPy.algorithms.algorithm import Algorithm | 
            
                                                                                                            
                            
            
                                    
            
            
                | 8 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 9 |  |  | logging.basicConfig() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 10 |  |  | logger = logging.getLogger('NiaPy.algorithms.basic') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 11 |  |  | logger.setLevel('INFO') | 
            
                                                                                                            
                            
            
                                    
            
            
                | 12 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 13 |  |  | __all__ = ['FlowerPollinationAlgorithm'] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 14 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 15 |  |  | class FlowerPollinationAlgorithm(Algorithm): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 16 |  |  | 	r"""Implementation of Flower Pollination algorithm. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 17 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 18 |  |  | 	Algorithm: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 19 |  |  | 		Flower Pollination algorithm | 
            
                                                                                                            
                            
            
                                    
            
            
                | 20 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 21 |  |  | 	Date: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 22 |  |  | 		2018 | 
            
                                                                                                            
                            
            
                                    
            
            
                | 23 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 24 |  |  | 	Authors: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 25 |  |  | 		Dusan Fister, Iztok Fister Jr. and Klemen Berkovič | 
            
                                                                                                            
                            
            
                                    
            
            
                | 26 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 27 |  |  | 	License: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 28 |  |  | 		MIT | 
            
                                                                                                            
                            
            
                                    
            
            
                | 29 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 30 |  |  | 	Reference paper: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 31 |  |  | 		Yang, Xin-She. "Flower pollination algorithm for global optimization. International conference on unconventional computing and natural computation. Springer, Berlin, Heidelberg, 2012. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 32 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 33 |  |  | 	References URL: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 34 |  |  | 		Implementation is based on the following MATLAB code: https://www.mathworks.com/matlabcentral/fileexchange/45112-flower-pollination-algorithm?requestedDomain=true | 
            
                                                                                                            
                            
            
                                    
            
            
                | 35 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 36 |  |  | 	Attributes: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 37 |  |  | 		Name (List[str]): List of strings representing algorithm names. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 38 |  |  | 		p (float): probability switch. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 39 |  |  | 		beta (float): Shape of the gamma distribution (should be greater than zero). | 
            
                                                                                                            
                            
            
                                    
            
            
                | 40 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 41 |  |  | 	See Also: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 42 |  |  | 		* :class:`NiaPy.algorithms.Algorithm` | 
            
                                                                                                            
                            
            
                                    
            
            
                | 43 |  |  | 	""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 44 |  |  | 	Name = ['FlowerPollinationAlgorithm', 'FPA'] | 
            
                                                                                                            
                                                                
            
                                    
            
            
                | 45 |  |  |  | 
            
                                                                        
                            
            
                                    
            
            
                | 46 |  |  | 	@staticmethod | 
            
                                                                        
                            
            
                                    
            
            
                | 47 |  |  | 	def algorithmInfo(): | 
            
                                                                        
                            
            
                                    
            
            
                | 48 |  |  | 		r"""Get default information of algorithm. | 
            
                                                                        
                            
            
                                    
            
            
                | 49 |  |  |  | 
            
                                                                        
                            
            
                                    
            
            
                | 50 |  |  | 		Returns: | 
            
                                                                        
                            
            
                                    
            
            
                | 51 |  |  | 			str: Basic information. | 
            
                                                                        
                            
            
                                    
            
            
                | 52 |  |  |  | 
            
                                                                        
                            
            
                                    
            
            
                | 53 |  |  | 		See Also: | 
            
                                                                        
                            
            
                                    
            
            
                | 54 |  |  | 			* :func:`NiaPy.algorithms.Algorithm.algorithmInfo` | 
            
                                                                        
                            
            
                                    
            
            
                | 55 |  |  | 		""" | 
            
                                                                        
                            
            
                                    
            
            
                | 56 |  |  | 		return r"""Yang, Xin-She. "Flower pollination algorithm for global optimization. International conference on unconventional computing and natural computation. Springer, Berlin, Heidelberg, 2012.""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 57 |  |  |  | 
            
                                                                                                            
                            
            
                                                                    
                                                                                                        
            
            
                | 58 |  | View Code Duplication | 	@staticmethod | 
                            
                    |  |  |  | 
                                                                                        
                                                                                     | 
            
                                                                                                            
                            
            
                                    
            
            
                | 59 |  |  | 	def typeParameters(): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 60 |  |  | 		r"""TODO. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 61 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 62 |  |  | 		Returns: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 63 |  |  | 			Dict[str, Callable]: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 64 |  |  | 				* p (function): TODO | 
            
                                                                                                            
                            
            
                                    
            
            
                | 65 |  |  | 				* beta (function): TODO | 
            
                                                                                                            
                            
            
                                    
            
            
                | 66 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 67 |  |  | 		See Also: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 68 |  |  | 			* :func:`NiaPy.algorithms.Algorithm.typeParameters` | 
            
                                                                                                            
                            
            
                                    
            
            
                | 69 |  |  | 		""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 70 |  |  | 		d = Algorithm.typeParameters() | 
            
                                                                                                            
                            
            
                                    
            
            
                | 71 |  |  | 		d.update({ | 
            
                                                                                                            
                            
            
                                    
            
            
                | 72 |  |  | 			'p': lambda x: isinstance(x, float) and 0 <= x <= 1, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 73 |  |  | 			'beta': lambda x: isinstance(x, (float, int)) and x > 0, | 
            
                                                                                                            
                            
            
                                    
            
            
                | 74 |  |  | 		}) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 75 |  |  | 		return d | 
            
                                                                                                            
                            
            
                                    
            
            
                | 76 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 77 |  |  | 	def setParameters(self, NP=25, p=0.35, beta=1.5, **ukwargs): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 78 |  |  | 		r"""Set core parameters of FlowerPollinationAlgorithm algorithm. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 79 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 80 |  |  | 		Arguments: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 81 |  |  | 			NP (int): Population size. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 82 |  |  | 			p (float): Probability switch. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 83 |  |  | 			beta (float): Shape of the gamma distribution (should be greater than zero). | 
            
                                                                                                            
                            
            
                                    
            
            
                | 84 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 85 |  |  | 		See Also: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 86 |  |  | 			* :func:`NiaPy.algorithms.Algorithm.setParameters` | 
            
                                                                                                            
                            
            
                                    
            
            
                | 87 |  |  | 		""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 88 |  |  | 		Algorithm.setParameters(self, NP=NP, **ukwargs) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 89 |  |  | 		self.p, self.beta = p, beta | 
            
                                                                                                            
                            
            
                                    
            
            
                | 90 |  |  | 		self.S = zeros((NP, 10)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 91 |  |  |  | 
            
                                                                                                            
                            
            
                                                                    
                                                                                                        
            
            
                | 92 |  | View Code Duplication | 	def repair(self, x, task): | 
                            
                    |  |  |  | 
                                                                                        
                                                                                     | 
            
                                                                                                            
                            
            
                                    
            
            
                | 93 |  |  | 		r"""Repair solution to search space. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 94 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 95 |  |  | 		Args: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 96 |  |  | 			x (numpy.ndarray): Solution to fix. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 97 |  |  | 			task (Task): Optimization task. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 98 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 99 |  |  | 		Returns: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 100 |  |  | 			numpy.ndarray: fixed solution. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 101 |  |  | 		""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 102 |  |  | 		ir = where(x > task.Upper) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 103 |  |  | 		x[ir] = task.Lower[ir] + x[ir] % task.bRange[ir] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 104 |  |  | 		ir = where(x < task.Lower) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 105 |  |  | 		x[ir] = task.Lower[ir] + x[ir] % task.bRange[ir] | 
            
                                                                                                            
                            
            
                                    
            
            
                | 106 |  |  | 		return x | 
            
                                                                                                            
                            
            
                                    
            
            
                | 107 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 108 |  |  | 	def levy(self, D): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 109 |  |  | 		r"""Levy function. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 110 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 111 |  |  | 		Returns: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 112 |  |  | 			float: Next Levy number. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 113 |  |  | 		""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 114 |  |  | 		sigma = (Gamma(1 + self.beta) * sin(pi * self.beta / 2) / (Gamma((1 + self.beta) / 2) * self.beta * 2 ** ((self.beta - 1) / 2))) ** (1 / self.beta) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 115 |  |  | 		return 0.01 * (self.normal(0, 1, D) * sigma / fabs(self.normal(0, 1, D)) ** (1 / self.beta)) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 116 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 117 |  |  | 	def initPopulation(self, task): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 118 |  |  | 		pop, fpop, d = Algorithm.initPopulation(self, task) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 119 |  |  | 		d.update({'S': zeros((self.NP, task.D))}) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 120 |  |  | 		return pop, fpop, d | 
            
                                                                                                            
                            
            
                                    
            
            
                | 121 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 122 |  |  | 	def runIteration(self, task, Sol, Sol_f, xb, fxb, S, **dparams): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 123 |  |  | 		r"""Core function of FlowerPollinationAlgorithm algorithm. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 124 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 125 |  |  | 		Args: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 126 |  |  | 			task (Task): Optimization task. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 127 |  |  | 			Sol (numpy.ndarray): Current population. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 128 |  |  | 			Sol_f (numpy.ndarray): Current population fitness/function values. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 129 |  |  | 			xb (numpy.ndarray): Global best solution. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 130 |  |  | 			fxb (float): Global best solution function/fitness value. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 131 |  |  | 			**dparams (Dict[str, Any]): Additional arguments. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 132 |  |  |  | 
            
                                                                                                            
                            
            
                                    
            
            
                | 133 |  |  | 		Returns: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 134 |  |  | 			Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, float, Dict[str, Any]]: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 135 |  |  | 				1. New population. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 136 |  |  | 				2. New populations fitness/function values. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 137 |  |  | 				3. New global best solution. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 138 |  |  | 				4. New global best solution fitness/objective value. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 139 |  |  | 				5. Additional arguments. | 
            
                                                                                                            
                            
            
                                    
            
            
                | 140 |  |  | 		""" | 
            
                                                                                                            
                            
            
                                    
            
            
                | 141 |  |  | 		for i in range(self.NP): | 
            
                                                                                                            
                            
            
                                    
            
            
                | 142 |  |  | 			if self.uniform(0, 1) > self.p: S[i] += self.levy(task.D) * (Sol[i] - xb) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 143 |  |  | 			else: | 
            
                                                                                                            
                            
            
                                    
            
            
                | 144 |  |  | 				JK = self.Rand.permutation(self.NP) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 145 |  |  | 				S[i] += self.uniform(0, 1) * (Sol[JK[0]] - Sol[JK[1]]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 146 |  |  | 			S[i] = self.repair(S[i], task) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 147 |  |  | 			f_i = task.eval(S[i]) | 
            
                                                                                                            
                            
            
                                    
            
            
                | 148 |  |  | 			if f_i <= Sol_f[i]: Sol[i], Sol_f[i] = S[i], f_i | 
            
                                                                                                            
                            
            
                                    
            
            
                | 149 |  |  | 			if f_i <= fxb: xb, fxb = S[i].copy(), f_i | 
            
                                                                                                            
                            
            
                                    
            
            
                | 150 |  |  | 		return Sol, Sol_f, xb, fxb, {'S': S} | 
            
                                                                                                            
                            
            
                                    
            
            
                | 151 |  |  |  | 
            
                                                                                                            
                                                                
            
                                    
            
            
                | 152 |  |  | # vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3 | 
            
                                                        
            
                                    
            
            
                | 153 |  |  |  |