NiaPy.algorithms.basic.cso   A
last analyzed

Complexity

Total Complexity 28

Size/Duplication

Total Lines 233
Duplicated Lines 0 %

Importance

Changes 0
Metric Value
eloc 92
dl 0
loc 233
rs 10
c 0
b 0
f 0
wmc 28

10 Methods

Rating   Name   Duplication   Size   Complexity  
A CatSwarmOptimization.initPopulation() 0 19 1
A CatSwarmOptimization.weightedSelection() 0 11 1
C CatSwarmOptimization.typeParameters() 0 10 9
A CatSwarmOptimization.algorithmInfo() 0 11 1
A CatSwarmOptimization.randomSeekTrace() 0 11 1
A CatSwarmOptimization.runIteration() 0 31 4
A CatSwarmOptimization.setParameters() 0 18 1
A CatSwarmOptimization.repair() 0 16 1
B CatSwarmOptimization.seekingMode() 0 51 8
A CatSwarmOptimization.tracingMode() 0 17 1
1
# encoding=utf8
2
import logging
3
import math
4
5
import numpy as np
6
from NiaPy.algorithms.algorithm import Algorithm
7
logging.basicConfig()
8
logger = logging.getLogger('NiaPy.algorithms.basic')
9
logger.setLevel('INFO')
10
11
__all__ = ['CatSwarmOptimization']
12
13
class CatSwarmOptimization(Algorithm):
14
    r"""Implementation of Cat swarm optimiization algorithm.
15
16
    **Algorithm:** Cat swarm optimization
17
18
    **Date:** 2019
19
20
    **Author:** Mihael Baketarić
21
22
    **License:** MIT
23
24
    **Reference paper:** Chu, S. C., Tsai, P. W., & Pan, J. S. (2006). Cat swarm optimization. In Pacific Rim international conference on artificial intelligence (pp. 854-858). Springer, Berlin, Heidelberg..
25
    """
26
    Name = ['CatSwarmOptimization', 'CSO']
27
28
    @staticmethod
29
    def algorithmInfo():
30
    	r"""Get algorithm information.
31
32
    	Returns:
33
    		str: Algorithm information.
34
35
    	See Also:
36
    		* :func:`NiaPy.algorithms.Algorithm.algorithmInfo`
37
    	"""
38
    	return r"""Chu, S. C., Tsai, P. W., & Pan, J. S. (2006). Cat swarm optimization. In Pacific Rim international conference on artificial intelligence (pp. 854-858). Springer, Berlin, Heidelberg."""
39
40
    @staticmethod
41
    def typeParameters(): return {
42
        'NP': lambda x: isinstance(x, int) and x > 0,
43
        'MR': lambda x: isinstance(x, (int, float)) and 0 <= x <= 1,
44
        'C1': lambda x: isinstance(x, (int, float)) and x >= 0,
45
        'SMP': lambda x: isinstance(x, int) and x > 0,
46
        'SPC': lambda x: isinstance(x, bool),
47
        'CDC': lambda x: isinstance(x, (int, float)) and 0 <= x <= 1,
48
        'SRD': lambda x: isinstance(x, (int, float)) and 0 <= x <= 1,
49
        'vMax': lambda x: isinstance(x, (int, float)) and x > 0
50
    }
51
52
    def setParameters(self, NP=30, MR=0.1, C1=2.05, SMP=3, SPC=True, CDC=0.85, SRD=0.2, vMax=1.9, **ukwargs):
53
        r"""Set the algorithm parameters.
54
55
        Arguments:
56
            NP (int): Number of individuals in population.
57
            MR (float): Mixture ratio.
58
            C1 (float): Constant in tracing mode.
59
            SMP (int): Seeking memory pool.
60
            SPC (bool): Self-position considering.
61
            CDC (float): Decides how many dimensions will be varied.
62
            SRD (float): Seeking range of the selected dimension.
63
            vMax (float): Maximal velocity.
64
65
            See Also:
66
                * :func:`NiaPy.algorithms.Algorithm.setParameters`
67
        """
68
        Algorithm.setParameters(self, NP=NP, **ukwargs)
69
        self.MR, self.C1, self.SMP, self.SPC, self.CDC, self.SRD, self.vMax = MR, C1, SMP, SPC, CDC, SRD, vMax
70
71
    def initPopulation(self, task):
72
        r"""Initialize population.
73
74
        Args:
75
            task (Task): Optimization task.
76
77
        Returns:
78
            Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]:
79
                1. Initialized population.
80
                2. Initialized populations fitness/function values.
81
                3. Additional arguments:
82
                    * Dictionary of modes (seek or trace) and velocities for each cat
83
        See Also:
84
            * :func:`NiaPy.algorithms.Algorithm.initPopulation`
85
        """
86
        pop, fpop, d = Algorithm.initPopulation(self, task)
87
        d['modes'] = self.randomSeekTrace()
88
        d['velocities'] = self.uniform(-self.vMax, self.vMax, [len(pop), task.D])
89
        return pop, fpop, d
90
91
    def repair(self, x, l, u):
92
        r"""Repair array to range.
93
94
        Args:
95
            x (numpy.ndarray): Array to repair.
96
            l (numpy.ndarray): Lower limit of allowed range.
97
            u (numpy.ndarray): Upper limit of allowed range.
98
99
        Returns:
100
            numpy.ndarray: Repaired array.
101
        """
102
        ir = np.where(x < l)
103
        x[ir] = l[ir]
104
        ir = np.where(x > u)
105
        x[ir] = u[ir]
106
        return x
107
108
    def randomSeekTrace(self):
109
        r"""Set cats into seeking/tracing mode.
110
111
        Returns:
112
            numpy.ndarray: One or zero. One means tracing mode. Zero means seeking mode. Length of list is equal to NP.
113
        """
114
        lista = np.zeros((self.NP,), dtype=int)
0 ignored issues
show
Comprehensibility Best Practice introduced by
The variable int does not seem to be defined.
Loading history...
115
        indexes = np.arange(self.NP)
116
        self.Rand.shuffle(indexes)
117
        lista[indexes[:int(self.NP * self.MR)]] = 1
118
        return lista
119
120
    def weightedSelection(self, weights):
121
        r"""Random selection considering the weights.
122
123
        Args:
124
            weights (numpy.ndarray): weight for each potential position.
125
126
        Returns:
127
            int: index of selected next position.
128
        """
129
        cumulative_sum = np.cumsum(weights)
130
        return np.argmax(cumulative_sum >= (self.rand() * cumulative_sum[-1]))
131
132
    def seekingMode(self, task, cat, fcat, pop, fpop, fxb):
133
        r"""Seeking mode.
134
135
        Args:
136
            task (Task): Optimization task.
137
            cat (numpy.ndarray): Individual from population.
138
            fcat (float): Current individual's fitness/function value.
139
            pop (numpy.ndarray): Current population.
140
            fpop (numpy.ndarray): Current population fitness/function values.
141
            fxb (float): Current best cat fitness/function value.
142
143
        Returns:
144
            Tuple[numpy.ndarray, float, numpy.ndarray, float]:
145
                1. Updated individual's position
146
                2. Updated individual's fitness/function value
147
                3. Updated global best position
148
                4. Updated global best fitness/function value
149
        """
150
        cat_copies = []
151
        cat_copies_fs = []
152
        for j in range(self.SMP - 1 if self.SPC else self.SMP):
153
            cat_copies.append(cat.copy())
154
            indexes = np.arange(task.D)
155
            self.Rand.shuffle(indexes)
156
            to_vary_indexes = indexes[:int(task.D * self.CDC)]
157
            if self.randint(2) == 1:
158
                cat_copies[j][to_vary_indexes] += cat_copies[j][to_vary_indexes] * self.SRD
159
            else:
160
                cat_copies[j][to_vary_indexes] -= cat_copies[j][to_vary_indexes] * self.SRD
161
            cat_copies[j] = task.repair(cat_copies[j])
162
            cat_copies_fs.append(task.eval(cat_copies[j]))
163
        if self.SPC:
164
            cat_copies.append(cat.copy())
165
            cat_copies_fs.append(fcat)
166
167
        cat_copies_select_probs = np.ones(len(cat_copies))
168
        fmax = np.max(cat_copies_fs)
169
        fmin = np.min(cat_copies_fs)
170
        if any(x != cat_copies_fs[0] for x in cat_copies_fs):
171
            fb = fmax
172
            if math.isinf(fb):
173
                cat_copies_select_probs = np.full(len(cat_copies), fb)
174
            else:
175
                cat_copies_select_probs = np.abs(cat_copies_fs - fb) / (fmax - fmin)
176
        if fmin < fxb:
177
            fxb = fmin
178
            ind = self.randint(self.NP, 1, 0)
179
            pop[ind] = cat_copies[np.where(cat_copies_fs == fmin)[0][0]]
180
            fpop[ind] = fmin
181
        sel_index = self.weightedSelection(cat_copies_select_probs)
182
        return cat_copies[sel_index], cat_copies_fs[sel_index], pop, fpop
183
184
    def tracingMode(self, task, cat, velocity, xb):
185
        r"""Tracing mode.
186
187
        Args:
188
            task (Task): Optimization task.
189
            cat (numpy.ndarray): Individual from population.
190
            velocity (numpy.ndarray): Velocity of individual.
191
            xb (numpy.ndarray): Current best individual.
192
        Returns:
193
            Tuple[numpy.ndarray, float, numpy.ndarray]:
194
                1. Updated individual's position
195
                2. Updated individual's fitness/function value
196
                3. Updated individual's velocity vector
197
        """
198
        Vnew = self.repair(velocity + (self.uniform(0, 1, len(velocity)) * self.C1 * (xb - cat)), np.full(task.D, -self.vMax), np.full(task.D, self.vMax))
199
        cat_new = task.repair(cat + Vnew)
200
        return cat_new, task.eval(cat_new), Vnew
201
202
    def runIteration(self, task, pop, fpop, xb, fxb, velocities, modes, **dparams):
203
        r"""Core function of Cat Swarm Optimization algorithm.
204
205
        Args:
206
            task (Task): Optimization task.
207
            pop (numpy.ndarray): Current population.
208
            fpop (numpy.ndarray): Current population fitness/function values.
209
            xb (numpy.ndarray): Current best individual.
210
            fxb (float): Current best cat fitness/function value.
211
            velocities (numpy.ndarray): Velocities of individuals.
212
            modes (numpy.ndarray): Flag of each individual.
213
            **dparams (Dict[str, Any]): Additional function arguments.
214
215
        Returns:
216
            Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, float, Dict[str, Any]]:
217
                1. New population.
218
                2. New population fitness/function values.
219
                3. New global best solution.
220
                4. New global best solutions fitness/objective value.
221
                5. Additional arguments:
222
                    * Dictionary of modes (seek or trace) and velocities for each cat.
223
        """
224
        pop_copies = pop.copy()
225
        for k in range(len(pop_copies)):
226
            if modes[k] == 0:
227
                pop_copies[k], fpop[k], pop_copies[:], fpop[:] = self.seekingMode(task, pop_copies[k], fpop[k], pop_copies, fpop, fxb)
228
            else:  # if cat in tracing mode
229
                pop_copies[k], fpop[k], velocities[k] = self.tracingMode(task, pop_copies[k], velocities[k], xb)
230
        ib = np.argmin(fpop)
231
        if fpop[ib] < fxb: xb, fxb = pop_copies[ib].copy(), fpop[ib]
232
        return pop_copies, fpop, xb, fxb, {'velocities': velocities, 'modes': self.randomSeekTrace()}
233
234
# vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3
235