1
|
|
|
# encoding=utf8 |
2
|
|
|
import logging |
3
|
|
|
import math |
4
|
|
|
|
5
|
|
|
import numpy as np |
6
|
|
|
from NiaPy.algorithms.algorithm import Algorithm |
7
|
|
|
logging.basicConfig() |
8
|
|
|
logger = logging.getLogger('NiaPy.algorithms.basic') |
9
|
|
|
logger.setLevel('INFO') |
10
|
|
|
|
11
|
|
|
__all__ = ['CatSwarmOptimization'] |
12
|
|
|
|
13
|
|
|
class CatSwarmOptimization(Algorithm): |
14
|
|
|
r"""Implementation of Cat swarm optimiization algorithm. |
15
|
|
|
|
16
|
|
|
**Algorithm:** Cat swarm optimization |
17
|
|
|
|
18
|
|
|
**Date:** 2019 |
19
|
|
|
|
20
|
|
|
**Author:** Mihael Baketarić |
21
|
|
|
|
22
|
|
|
**License:** MIT |
23
|
|
|
|
24
|
|
|
**Reference paper:** Chu, S. C., Tsai, P. W., & Pan, J. S. (2006). Cat swarm optimization. In Pacific Rim international conference on artificial intelligence (pp. 854-858). Springer, Berlin, Heidelberg.. |
25
|
|
|
""" |
26
|
|
|
Name = ['CatSwarmOptimization', 'CSO'] |
27
|
|
|
|
28
|
|
|
@staticmethod |
29
|
|
|
def algorithmInfo(): |
30
|
|
|
r"""Get algorithm information. |
31
|
|
|
|
32
|
|
|
Returns: |
33
|
|
|
str: Algorithm information. |
34
|
|
|
|
35
|
|
|
See Also: |
36
|
|
|
* :func:`NiaPy.algorithms.Algorithm.algorithmInfo` |
37
|
|
|
""" |
38
|
|
|
return r"""Chu, S. C., Tsai, P. W., & Pan, J. S. (2006). Cat swarm optimization. In Pacific Rim international conference on artificial intelligence (pp. 854-858). Springer, Berlin, Heidelberg.""" |
39
|
|
|
|
40
|
|
|
@staticmethod |
41
|
|
|
def typeParameters(): return { |
42
|
|
|
'NP': lambda x: isinstance(x, int) and x > 0, |
43
|
|
|
'MR': lambda x: isinstance(x, (int, float)) and 0 <= x <= 1, |
44
|
|
|
'C1': lambda x: isinstance(x, (int, float)) and x >= 0, |
45
|
|
|
'SMP': lambda x: isinstance(x, int) and x > 0, |
46
|
|
|
'SPC': lambda x: isinstance(x, bool), |
47
|
|
|
'CDC': lambda x: isinstance(x, (int, float)) and 0 <= x <= 1, |
48
|
|
|
'SRD': lambda x: isinstance(x, (int, float)) and 0 <= x <= 1, |
49
|
|
|
'vMax': lambda x: isinstance(x, (int, float)) and x > 0 |
50
|
|
|
} |
51
|
|
|
|
52
|
|
|
def setParameters(self, NP=30, MR=0.1, C1=2.05, SMP=3, SPC=True, CDC=0.85, SRD=0.2, vMax=1.9, **ukwargs): |
53
|
|
|
r"""Set the algorithm parameters. |
54
|
|
|
|
55
|
|
|
Arguments: |
56
|
|
|
NP (int): Number of individuals in population. |
57
|
|
|
MR (float): Mixture ratio. |
58
|
|
|
C1 (float): Constant in tracing mode. |
59
|
|
|
SMP (int): Seeking memory pool. |
60
|
|
|
SPC (bool): Self-position considering. |
61
|
|
|
CDC (float): Decides how many dimensions will be varied. |
62
|
|
|
SRD (float): Seeking range of the selected dimension. |
63
|
|
|
vMax (float): Maximal velocity. |
64
|
|
|
|
65
|
|
|
See Also: |
66
|
|
|
* :func:`NiaPy.algorithms.Algorithm.setParameters` |
67
|
|
|
""" |
68
|
|
|
Algorithm.setParameters(self, NP=NP, **ukwargs) |
69
|
|
|
self.MR, self.C1, self.SMP, self.SPC, self.CDC, self.SRD, self.vMax = MR, C1, SMP, SPC, CDC, SRD, vMax |
70
|
|
|
|
71
|
|
|
def initPopulation(self, task): |
72
|
|
|
r"""Initialize population. |
73
|
|
|
|
74
|
|
|
Args: |
75
|
|
|
task (Task): Optimization task. |
76
|
|
|
|
77
|
|
|
Returns: |
78
|
|
|
Tuple[numpy.ndarray, numpy.ndarray[float], Dict[str, Any]]: |
79
|
|
|
1. Initialized population. |
80
|
|
|
2. Initialized populations fitness/function values. |
81
|
|
|
3. Additional arguments: |
82
|
|
|
* Dictionary of modes (seek or trace) and velocities for each cat |
83
|
|
|
See Also: |
84
|
|
|
* :func:`NiaPy.algorithms.Algorithm.initPopulation` |
85
|
|
|
""" |
86
|
|
|
pop, fpop, d = Algorithm.initPopulation(self, task) |
87
|
|
|
d['modes'] = self.randomSeekTrace() |
88
|
|
|
d['velocities'] = self.uniform(-self.vMax, self.vMax, [len(pop), task.D]) |
89
|
|
|
return pop, fpop, d |
90
|
|
|
|
91
|
|
|
def repair(self, x, l, u): |
92
|
|
|
r"""Repair array to range. |
93
|
|
|
|
94
|
|
|
Args: |
95
|
|
|
x (numpy.ndarray): Array to repair. |
96
|
|
|
l (numpy.ndarray): Lower limit of allowed range. |
97
|
|
|
u (numpy.ndarray): Upper limit of allowed range. |
98
|
|
|
|
99
|
|
|
Returns: |
100
|
|
|
numpy.ndarray: Repaired array. |
101
|
|
|
""" |
102
|
|
|
ir = np.where(x < l) |
103
|
|
|
x[ir] = l[ir] |
104
|
|
|
ir = np.where(x > u) |
105
|
|
|
x[ir] = u[ir] |
106
|
|
|
return x |
107
|
|
|
|
108
|
|
|
def randomSeekTrace(self): |
109
|
|
|
r"""Set cats into seeking/tracing mode. |
110
|
|
|
|
111
|
|
|
Returns: |
112
|
|
|
numpy.ndarray: One or zero. One means tracing mode. Zero means seeking mode. Length of list is equal to NP. |
113
|
|
|
""" |
114
|
|
|
lista = np.zeros((self.NP,), dtype=int) |
|
|
|
|
115
|
|
|
indexes = np.arange(self.NP) |
116
|
|
|
self.Rand.shuffle(indexes) |
117
|
|
|
lista[indexes[:int(self.NP * self.MR)]] = 1 |
118
|
|
|
return lista |
119
|
|
|
|
120
|
|
|
def weightedSelection(self, weights): |
121
|
|
|
r"""Random selection considering the weights. |
122
|
|
|
|
123
|
|
|
Args: |
124
|
|
|
weights (numpy.ndarray): weight for each potential position. |
125
|
|
|
|
126
|
|
|
Returns: |
127
|
|
|
int: index of selected next position. |
128
|
|
|
""" |
129
|
|
|
cumulative_sum = np.cumsum(weights) |
130
|
|
|
return np.argmax(cumulative_sum >= (self.rand() * cumulative_sum[-1])) |
131
|
|
|
|
132
|
|
|
def seekingMode(self, task, cat, fcat, pop, fpop, fxb): |
133
|
|
|
r"""Seeking mode. |
134
|
|
|
|
135
|
|
|
Args: |
136
|
|
|
task (Task): Optimization task. |
137
|
|
|
cat (numpy.ndarray): Individual from population. |
138
|
|
|
fcat (float): Current individual's fitness/function value. |
139
|
|
|
pop (numpy.ndarray): Current population. |
140
|
|
|
fpop (numpy.ndarray): Current population fitness/function values. |
141
|
|
|
fxb (float): Current best cat fitness/function value. |
142
|
|
|
|
143
|
|
|
Returns: |
144
|
|
|
Tuple[numpy.ndarray, float, numpy.ndarray, float]: |
145
|
|
|
1. Updated individual's position |
146
|
|
|
2. Updated individual's fitness/function value |
147
|
|
|
3. Updated global best position |
148
|
|
|
4. Updated global best fitness/function value |
149
|
|
|
""" |
150
|
|
|
cat_copies = [] |
151
|
|
|
cat_copies_fs = [] |
152
|
|
|
for j in range(self.SMP - 1 if self.SPC else self.SMP): |
153
|
|
|
cat_copies.append(cat.copy()) |
154
|
|
|
indexes = np.arange(task.D) |
155
|
|
|
self.Rand.shuffle(indexes) |
156
|
|
|
to_vary_indexes = indexes[:int(task.D * self.CDC)] |
157
|
|
|
if self.randint(2) == 1: |
158
|
|
|
cat_copies[j][to_vary_indexes] += cat_copies[j][to_vary_indexes] * self.SRD |
159
|
|
|
else: |
160
|
|
|
cat_copies[j][to_vary_indexes] -= cat_copies[j][to_vary_indexes] * self.SRD |
161
|
|
|
cat_copies[j] = task.repair(cat_copies[j]) |
162
|
|
|
cat_copies_fs.append(task.eval(cat_copies[j])) |
163
|
|
|
if self.SPC: |
164
|
|
|
cat_copies.append(cat.copy()) |
165
|
|
|
cat_copies_fs.append(fcat) |
166
|
|
|
|
167
|
|
|
cat_copies_select_probs = np.ones(len(cat_copies)) |
168
|
|
|
fmax = np.max(cat_copies_fs) |
169
|
|
|
fmin = np.min(cat_copies_fs) |
170
|
|
|
if any(x != cat_copies_fs[0] for x in cat_copies_fs): |
171
|
|
|
fb = fmax |
172
|
|
|
if math.isinf(fb): |
173
|
|
|
cat_copies_select_probs = np.full(len(cat_copies), fb) |
174
|
|
|
else: |
175
|
|
|
cat_copies_select_probs = np.abs(cat_copies_fs - fb) / (fmax - fmin) |
176
|
|
|
if fmin < fxb: |
177
|
|
|
fxb = fmin |
178
|
|
|
ind = self.randint(self.NP, 1, 0) |
179
|
|
|
pop[ind] = cat_copies[np.where(cat_copies_fs == fmin)[0][0]] |
180
|
|
|
fpop[ind] = fmin |
181
|
|
|
sel_index = self.weightedSelection(cat_copies_select_probs) |
182
|
|
|
return cat_copies[sel_index], cat_copies_fs[sel_index], pop, fpop |
183
|
|
|
|
184
|
|
|
def tracingMode(self, task, cat, velocity, xb): |
185
|
|
|
r"""Tracing mode. |
186
|
|
|
|
187
|
|
|
Args: |
188
|
|
|
task (Task): Optimization task. |
189
|
|
|
cat (numpy.ndarray): Individual from population. |
190
|
|
|
velocity (numpy.ndarray): Velocity of individual. |
191
|
|
|
xb (numpy.ndarray): Current best individual. |
192
|
|
|
Returns: |
193
|
|
|
Tuple[numpy.ndarray, float, numpy.ndarray]: |
194
|
|
|
1. Updated individual's position |
195
|
|
|
2. Updated individual's fitness/function value |
196
|
|
|
3. Updated individual's velocity vector |
197
|
|
|
""" |
198
|
|
|
Vnew = self.repair(velocity + (self.uniform(0, 1, len(velocity)) * self.C1 * (xb - cat)), np.full(task.D, -self.vMax), np.full(task.D, self.vMax)) |
199
|
|
|
cat_new = task.repair(cat + Vnew) |
200
|
|
|
return cat_new, task.eval(cat_new), Vnew |
201
|
|
|
|
202
|
|
|
def runIteration(self, task, pop, fpop, xb, fxb, velocities, modes, **dparams): |
203
|
|
|
r"""Core function of Cat Swarm Optimization algorithm. |
204
|
|
|
|
205
|
|
|
Args: |
206
|
|
|
task (Task): Optimization task. |
207
|
|
|
pop (numpy.ndarray): Current population. |
208
|
|
|
fpop (numpy.ndarray): Current population fitness/function values. |
209
|
|
|
xb (numpy.ndarray): Current best individual. |
210
|
|
|
fxb (float): Current best cat fitness/function value. |
211
|
|
|
velocities (numpy.ndarray): Velocities of individuals. |
212
|
|
|
modes (numpy.ndarray): Flag of each individual. |
213
|
|
|
**dparams (Dict[str, Any]): Additional function arguments. |
214
|
|
|
|
215
|
|
|
Returns: |
216
|
|
|
Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, float, Dict[str, Any]]: |
217
|
|
|
1. New population. |
218
|
|
|
2. New population fitness/function values. |
219
|
|
|
3. New global best solution. |
220
|
|
|
4. New global best solutions fitness/objective value. |
221
|
|
|
5. Additional arguments: |
222
|
|
|
* Dictionary of modes (seek or trace) and velocities for each cat. |
223
|
|
|
""" |
224
|
|
|
pop_copies = pop.copy() |
225
|
|
|
for k in range(len(pop_copies)): |
226
|
|
|
if modes[k] == 0: |
227
|
|
|
pop_copies[k], fpop[k], pop_copies[:], fpop[:] = self.seekingMode(task, pop_copies[k], fpop[k], pop_copies, fpop, fxb) |
228
|
|
|
else: # if cat in tracing mode |
229
|
|
|
pop_copies[k], fpop[k], velocities[k] = self.tracingMode(task, pop_copies[k], velocities[k], xb) |
230
|
|
|
ib = np.argmin(fpop) |
231
|
|
|
if fpop[ib] < fxb: xb, fxb = pop_copies[ib].copy(), fpop[ib] |
232
|
|
|
return pop_copies, fpop, xb, fxb, {'velocities': velocities, 'modes': self.randomSeekTrace()} |
233
|
|
|
|
234
|
|
|
# vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3 |
235
|
|
|
|