reports.spaceprediction   F
last analyzed

Complexity

Total Complexity 119

Size/Duplication

Total Lines 586
Duplicated Lines 0 %

Importance

Changes 0
Metric Value
wmc 119
eloc 440
dl 0
loc 586
rs 2
c 0
b 0
f 0

3 Methods

Rating   Name   Duplication   Size   Complexity  
A Reporting.__init__() 0 3 1
A Reporting.on_options() 0 4 1
F Reporting.on_get() 0 553 117

How to fix   Complexity   

Complexity

Complex classes like reports.spaceprediction often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.

Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.

1
import re
2
from datetime import datetime, timedelta, timezone
3
from decimal import Decimal
4
import falcon
5
import mysql.connector
6
import simplejson as json
7
import config
8
# import excelexporters.spaceenergyprediction
9
from core import utilities
10
from core.useractivity import access_control, api_key_control
11
12
13
class Reporting:
14
    def __init__(self):
15
        """"Initializes Reporting"""
16
        pass
17
18
    @staticmethod
19
    def on_options(req, resp):
20
        _ = req
21
        resp.status = falcon.HTTP_200
22
23
    ####################################################################################################################
24
    # PROCEDURES
25
    # Step 1: valid parameters
26
    # Step 2: query the space
27
    # Step 3: query energy categories
28
    # Step 4: query base period energy prediction
29
    # Step 5: query reporting period energy prediction
30
    # Step 6: query tariff data
31
    # Step 7: construct the report
32
    ####################################################################################################################
33
    @staticmethod
34
    def on_get(req, resp):
35
        if 'API-KEY' not in req.headers or \
36
                not isinstance(req.headers['API-KEY'], str) or \
37
                len(str.strip(req.headers['API-KEY'])) == 0:
38
            access_control(req)
39
        else:
40
            api_key_control(req)
41
        print(req.params)
42
        space_id = req.params.get('spaceid')
43
        space_uuid = req.params.get('spaceuuid')
44
        period_type = req.params.get('periodtype')
45
        base_period_start_datetime_local = req.params.get('baseperiodstartdatetime')
46
        base_period_end_datetime_local = req.params.get('baseperiodenddatetime')
47
        reporting_period_start_datetime_local = req.params.get('reportingperiodstartdatetime')
48
        reporting_period_end_datetime_local = req.params.get('reportingperiodenddatetime')
49
        language = req.params.get('language')
50
        quick_mode = req.params.get('quickmode')
51
52
        ################################################################################################################
53
        # Step 1: valid parameters
54
        ################################################################################################################
55
        if space_id is None and space_uuid is None:
56
            raise falcon.HTTPError(status=falcon.HTTP_400,
57
                                   title='API.BAD_REQUEST',
58
                                   description='API.INVALID_SPACE_ID')
59
60
        if space_id is not None:
61
            space_id = str.strip(space_id)
62
            if not space_id.isdigit() or int(space_id) <= 0:
63
                raise falcon.HTTPError(status=falcon.HTTP_400,
64
                                       title='API.BAD_REQUEST',
65
                                       description='API.INVALID_SPACE_ID')
66
67
        if space_uuid is not None:
68
            regex = re.compile(r'^[a-f0-9]{8}-?[a-f0-9]{4}-?4[a-f0-9]{3}-?[89ab][a-f0-9]{3}-?[a-f0-9]{12}\Z', re.I)
69
            match = regex.match(str.strip(space_uuid))
70
            if not bool(match):
71
                raise falcon.HTTPError(status=falcon.HTTP_400,
72
                                       title='API.BAD_REQUEST',
73
                                       description='API.INVALID_SPACE_UUID')
74
75
        if period_type is None:
76
            raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST',
77
                                   description='API.INVALID_PERIOD_TYPE')
78
        else:
79
            period_type = str.strip(period_type)
80
            if period_type not in ['hourly', 'daily', 'weekly', 'monthly', 'yearly']:
81
                raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST',
82
                                       description='API.INVALID_PERIOD_TYPE')
83
84
        timezone_offset = int(config.utc_offset[1:3]) * 60 + int(config.utc_offset[4:6])
85
        if config.utc_offset[0] == '-':
86
            timezone_offset = -timezone_offset
87
88
        base_start_datetime_utc = None
89
        if base_period_start_datetime_local is not None and len(str.strip(base_period_start_datetime_local)) > 0:
90
            base_period_start_datetime_local = str.strip(base_period_start_datetime_local)
91
            try:
92
                base_start_datetime_utc = datetime.strptime(base_period_start_datetime_local, '%Y-%m-%dT%H:%M:%S')
93
94
            except ValueError:
95
                raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST',
96
                                       description="API.INVALID_BASE_PERIOD_START_DATETIME")
97
            base_start_datetime_utc = \
98
                base_start_datetime_utc.replace(tzinfo=timezone.utc) - timedelta(minutes=timezone_offset)
99
            # nomalize the start datetime
100
            if config.minutes_to_count == 30 and base_start_datetime_utc.minute >= 30:
101
                base_start_datetime_utc = base_start_datetime_utc.replace(minute=30, second=0, microsecond=0)
102
            else:
103
                base_start_datetime_utc = base_start_datetime_utc.replace(minute=0, second=0, microsecond=0)
104
105
        base_end_datetime_utc = None
106
        if base_period_end_datetime_local is not None and len(str.strip(base_period_end_datetime_local)) > 0:
107
            base_period_end_datetime_local = str.strip(base_period_end_datetime_local)
108
            try:
109
                base_end_datetime_utc = datetime.strptime(base_period_end_datetime_local, '%Y-%m-%dT%H:%M:%S')
110
111
            except ValueError:
112
                raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST',
113
                                       description="API.INVALID_BASE_PERIOD_END_DATETIME")
114
            base_end_datetime_utc = \
115
                base_end_datetime_utc.replace(tzinfo=timezone.utc) - timedelta(minutes=timezone_offset)
116
117
        if base_start_datetime_utc is not None and base_end_datetime_utc is not None and \
118
                base_start_datetime_utc >= base_end_datetime_utc:
119
            raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST',
120
                                   description='API.INVALID_BASE_PERIOD_END_DATETIME')
121
122
        if reporting_period_start_datetime_local is None:
123
            raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST',
124
                                   description="API.INVALID_REPORTING_PERIOD_START_DATETIME")
125
        else:
126
            reporting_period_start_datetime_local = str.strip(reporting_period_start_datetime_local)
127
            try:
128
                reporting_start_datetime_utc = datetime.strptime(reporting_period_start_datetime_local,
129
                                                                 '%Y-%m-%dT%H:%M:%S')
130
131
            except ValueError:
132
                raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST',
133
                                       description="API.INVALID_REPORTING_PERIOD_START_DATETIME")
134
            reporting_start_datetime_utc = \
135
                reporting_start_datetime_utc.replace(tzinfo=timezone.utc) - timedelta(minutes=timezone_offset)
136
            # nomalize the start datetime
137
            if config.minutes_to_count == 30 and reporting_start_datetime_utc.minute >= 30:
138
                reporting_start_datetime_utc = reporting_start_datetime_utc.replace(minute=30, second=0, microsecond=0)
139
            else:
140
                reporting_start_datetime_utc = reporting_start_datetime_utc.replace(minute=0, second=0, microsecond=0)
141
142
        if reporting_period_end_datetime_local is None:
143
            raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST',
144
                                   description="API.INVALID_REPORTING_PERIOD_END_DATETIME")
145
        else:
146
            reporting_period_end_datetime_local = str.strip(reporting_period_end_datetime_local)
147
            try:
148
                reporting_end_datetime_utc = datetime.strptime(reporting_period_end_datetime_local,
149
                                                               '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \
150
                    timedelta(minutes=timezone_offset)
151
            except ValueError:
152
                raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST',
153
                                       description="API.INVALID_REPORTING_PERIOD_END_DATETIME")
154
155
        if reporting_start_datetime_utc >= reporting_end_datetime_utc:
156
            raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST',
157
                                   description='API.INVALID_REPORTING_PERIOD_END_DATETIME')
158
159
        # if turn quick mode on, do not return parameters data and excel file
160
        is_quick_mode = False
161
        if quick_mode is not None and \
162
                len(str.strip(quick_mode)) > 0 and \
163
                str.lower(str.strip(quick_mode)) in ('true', 't', 'on', 'yes', 'y'):
164
            is_quick_mode = True
165
166
        trans = utilities.get_translation(language)
167
        trans.install()
168
        _ = trans.gettext
169
170
        ################################################################################################################
171
        # Step 2: query the space
172
        ################################################################################################################
173
        cnx_system = mysql.connector.connect(**config.myems_system_db)
174
        cursor_system = cnx_system.cursor()
175
176
        cnx_energy_prediction = mysql.connector.connect(**config.myems_energy_prediction_db)
177
        cursor_energy_prediction = cnx_energy_prediction.cursor()
178
179
        cnx_historical = mysql.connector.connect(**config.myems_historical_db)
180
        cursor_historical = cnx_historical.cursor()
181
182
        if space_id is not None:
183
            cursor_system.execute(" SELECT id, name, area, number_of_occupants, cost_center_id "
184
                                  " FROM tbl_spaces "
185
                                  " WHERE id = %s ", (space_id,))
186
            row_space = cursor_system.fetchone()
187
        elif space_uuid is not None:
188
            cursor_system.execute(" SELECT id, name, area, number_of_occupants, cost_center_id "
189
                                  " FROM tbl_spaces "
190
                                  " WHERE uuid = %s ", (space_uuid,))
191
            row_space = cursor_system.fetchone()
192
193
        if row_space is None:
0 ignored issues
show
introduced by
The variable row_space does not seem to be defined for all execution paths.
Loading history...
194
            if cursor_system:
195
                cursor_system.close()
196
            if cnx_system:
197
                cnx_system.close()
198
199
            if cursor_energy_prediction:
200
                cursor_energy_prediction.close()
201
            if cnx_energy_prediction:
202
                cnx_energy_prediction.close()
203
204
            if cursor_historical:
205
                cursor_historical.close()
206
            if cnx_historical:
207
                cnx_historical.close()
208
            raise falcon.HTTPError(status=falcon.HTTP_404, title='API.NOT_FOUND', description='API.SPACE_NOT_FOUND')
209
210
        space = dict()
211
        space['id'] = row_space[0]
212
        space['name'] = row_space[1]
213
        space['area'] = row_space[2]
214
        space['number_of_occupants'] = row_space[3]
215
        space['cost_center_id'] = row_space[4]
216
217
        ################################################################################################################
218
        # Step 3: query energy categories
219
        ################################################################################################################
220
        energy_category_set = set()
221
        # query energy categories in base period
222
        cursor_energy_prediction.execute(" SELECT DISTINCT(energy_category_id) "
223
                                         " FROM tbl_space_input_category_hourly "
224
                                         " WHERE space_id = %s "
225
                                         "     AND start_datetime_utc >= %s "
226
                                         "     AND start_datetime_utc < %s ",
227
                                         (space['id'], base_start_datetime_utc, base_end_datetime_utc))
228
        rows_energy_categories = cursor_energy_prediction.fetchall()
229
        if rows_energy_categories is not None and len(rows_energy_categories) > 0:
230
            for row_energy_category in rows_energy_categories:
231
                energy_category_set.add(row_energy_category[0])
232
233
        # query energy categories in reporting period
234
        cursor_energy_prediction.execute(" SELECT DISTINCT(energy_category_id) "
235
                                         " FROM tbl_space_input_category_hourly "
236
                                         " WHERE space_id = %s "
237
                                         "     AND start_datetime_utc >= %s "
238
                                         "     AND start_datetime_utc < %s ",
239
                                         (space['id'], reporting_start_datetime_utc, reporting_end_datetime_utc))
240
        rows_energy_categories = cursor_energy_prediction.fetchall()
241
        if rows_energy_categories is not None and len(rows_energy_categories) > 0:
242
            for row_energy_category in rows_energy_categories:
243
                energy_category_set.add(row_energy_category[0])
244
245
        # query all energy categories in base period and reporting period
246
        cursor_system.execute(" SELECT id, name, unit_of_measure, kgce, kgco2e "
247
                              " FROM tbl_energy_categories "
248
                              " ORDER BY id ", )
249
        rows_energy_categories = cursor_system.fetchall()
250
        if rows_energy_categories is None or len(rows_energy_categories) == 0:
251
            if cursor_system:
252
                cursor_system.close()
253
            if cnx_system:
254
                cnx_system.close()
255
256
            if cursor_energy_prediction:
257
                cursor_energy_prediction.close()
258
            if cnx_energy_prediction:
259
                cnx_energy_prediction.close()
260
261
            if cursor_historical:
262
                cursor_historical.close()
263
            if cnx_historical:
264
                cnx_historical.close()
265
            raise falcon.HTTPError(status=falcon.HTTP_404,
266
                                   title='API.NOT_FOUND',
267
                                   description='API.ENERGY_CATEGORY_NOT_FOUND')
268
        energy_category_dict = dict()
269
        for row_energy_category in rows_energy_categories:
270
            if row_energy_category[0] in energy_category_set:
271
                energy_category_dict[row_energy_category[0]] = {"name": row_energy_category[1],
272
                                                                "unit_of_measure": row_energy_category[2],
273
                                                                "kgce": row_energy_category[3],
274
                                                                "kgco2e": row_energy_category[4]}
275
276
        ################################################################################################################
277
        # Step 4: query base period energy prediction
278
        ################################################################################################################
279
        base = dict()
280
        if energy_category_set is not None and len(energy_category_set) > 0:
281
            for energy_category_id in energy_category_set:
282
                kgce = energy_category_dict[energy_category_id]['kgce']
283
                kgco2e = energy_category_dict[energy_category_id]['kgco2e']
284
285
                base[energy_category_id] = dict()
286
                base[energy_category_id]['timestamps'] = list()
287
                base[energy_category_id]['values'] = list()
288
                base[energy_category_id]['subtotal'] = Decimal(0.0)
289
                base[energy_category_id]['subtotal_in_kgce'] = Decimal(0.0)
290
                base[energy_category_id]['subtotal_in_kgco2e'] = Decimal(0.0)
291
292
                cursor_energy_prediction.execute(" SELECT start_datetime_utc, actual_value "
293
                                                 " FROM tbl_space_input_category_hourly "
294
                                                 " WHERE space_id = %s "
295
                                                 "     AND energy_category_id = %s "
296
                                                 "     AND start_datetime_utc >= %s "
297
                                                 "     AND start_datetime_utc < %s "
298
                                                 " ORDER BY start_datetime_utc ",
299
                                                 (space['id'],
300
                                                  energy_category_id,
301
                                                  base_start_datetime_utc,
302
                                                  base_end_datetime_utc))
303
                rows_space_hourly = cursor_energy_prediction.fetchall()
304
305
                rows_space_periodically = utilities.aggregate_hourly_data_by_period(rows_space_hourly,
306
                                                                                    base_start_datetime_utc,
307
                                                                                    base_end_datetime_utc,
308
                                                                                    period_type)
309
                for row_space_periodically in rows_space_periodically:
310
                    current_datetime_local = row_space_periodically[0].replace(tzinfo=timezone.utc) + \
311
                                             timedelta(minutes=timezone_offset)
312
                    if period_type == 'hourly':
313
                        current_datetime = current_datetime_local.isoformat()[0:19]
314
                    elif period_type == 'daily':
315
                        current_datetime = current_datetime_local.isoformat()[0:10]
316
                    elif period_type == 'weekly':
317
                        current_datetime = current_datetime_local.isoformat()[0:10]
318
                    elif period_type == 'monthly':
319
                        current_datetime = current_datetime_local.isoformat()[0:7]
320
                    elif period_type == 'yearly':
321
                        current_datetime = current_datetime_local.isoformat()[0:4]
322
323
                    actual_value = Decimal(0.0) if row_space_periodically[1] is None else row_space_periodically[1]
324
                    base[energy_category_id]['timestamps'].append(current_datetime)
0 ignored issues
show
introduced by
The variable current_datetime does not seem to be defined for all execution paths.
Loading history...
325
                    base[energy_category_id]['values'].append(actual_value)
326
                    base[energy_category_id]['subtotal'] += actual_value
327
                    base[energy_category_id]['subtotal_in_kgce'] += actual_value * kgce
328
                    base[energy_category_id]['subtotal_in_kgco2e'] += actual_value * kgco2e
329
330
        ################################################################################################################
331
        # Step 5: query reporting period energy prediction
332
        ################################################################################################################
333
        reporting = dict()
334
        if energy_category_set is not None and len(energy_category_set) > 0:
335
            for energy_category_id in energy_category_set:
336
                kgce = energy_category_dict[energy_category_id]['kgce']
337
                kgco2e = energy_category_dict[energy_category_id]['kgco2e']
338
339
                reporting[energy_category_id] = dict()
340
                reporting[energy_category_id]['timestamps'] = list()
341
                reporting[energy_category_id]['values'] = list()
342
                reporting[energy_category_id]['subtotal'] = Decimal(0.0)
343
                reporting[energy_category_id]['subtotal_in_kgce'] = Decimal(0.0)
344
                reporting[energy_category_id]['subtotal_in_kgco2e'] = Decimal(0.0)
345
                reporting[energy_category_id]['toppeak'] = Decimal(0.0)
346
                reporting[energy_category_id]['onpeak'] = Decimal(0.0)
347
                reporting[energy_category_id]['midpeak'] = Decimal(0.0)
348
                reporting[energy_category_id]['offpeak'] = Decimal(0.0)
349
                reporting[energy_category_id]['deep'] = Decimal(0.0)
350
351
                cursor_energy_prediction.execute(" SELECT start_datetime_utc, actual_value "
352
                                                 " FROM tbl_space_input_category_hourly "
353
                                                 " WHERE space_id = %s "
354
                                                 "     AND energy_category_id = %s "
355
                                                 "     AND start_datetime_utc >= %s "
356
                                                 "     AND start_datetime_utc < %s "
357
                                                 " ORDER BY start_datetime_utc ",
358
                                                 (space['id'],
359
                                                  energy_category_id,
360
                                                  reporting_start_datetime_utc,
361
                                                  reporting_end_datetime_utc))
362
                rows_space_hourly = cursor_energy_prediction.fetchall()
363
364
                rows_space_periodically = utilities.aggregate_hourly_data_by_period(rows_space_hourly,
365
                                                                                    reporting_start_datetime_utc,
366
                                                                                    reporting_end_datetime_utc,
367
                                                                                    period_type)
368
                for row_space_periodically in rows_space_periodically:
369
                    current_datetime_local = row_space_periodically[0].replace(tzinfo=timezone.utc) + \
370
                                             timedelta(minutes=timezone_offset)
371
                    if period_type == 'hourly':
372
                        current_datetime = current_datetime_local.isoformat()[0:19]
373
                    elif period_type == 'daily':
374
                        current_datetime = current_datetime_local.isoformat()[0:10]
375
                    elif period_type == 'weekly':
376
                        current_datetime = current_datetime_local.isoformat()[0:10]
377
                    elif period_type == 'monthly':
378
                        current_datetime = current_datetime_local.isoformat()[0:7]
379
                    elif period_type == 'yearly':
380
                        current_datetime = current_datetime_local.isoformat()[0:4]
381
382
                    actual_value = Decimal(0.0) if row_space_periodically[1] is None else row_space_periodically[1]
383
                    reporting[energy_category_id]['timestamps'].append(current_datetime)
384
                    reporting[energy_category_id]['values'].append(actual_value)
385
                    reporting[energy_category_id]['subtotal'] += actual_value
386
                    reporting[energy_category_id]['subtotal_in_kgce'] += actual_value * kgce
387
                    reporting[energy_category_id]['subtotal_in_kgco2e'] += actual_value * kgco2e
388
389
                energy_category_tariff_dict = utilities.get_energy_category_peak_types(space['cost_center_id'],
390
                                                                                       energy_category_id,
391
                                                                                       reporting_start_datetime_utc,
392
                                                                                       reporting_end_datetime_utc)
393
                for row in rows_space_hourly:
394
                    peak_type = energy_category_tariff_dict.get(row[0], None)
395
                    if peak_type == 'toppeak':
396
                        reporting[energy_category_id]['toppeak'] += row[1]
397
                    elif peak_type == 'onpeak':
398
                        reporting[energy_category_id]['onpeak'] += row[1]
399
                    elif peak_type == 'midpeak':
400
                        reporting[energy_category_id]['midpeak'] += row[1]
401
                    elif peak_type == 'offpeak':
402
                        reporting[energy_category_id]['offpeak'] += row[1]
403
                    elif peak_type == 'deep':
404
                        reporting[energy_category_id]['deep'] += row[1]
405
        ################################################################################################################
406
        # Step 6: query tariff data
407
        ################################################################################################################
408
        parameters_data = dict()
409
        parameters_data['names'] = list()
410
        parameters_data['timestamps'] = list()
411
        parameters_data['values'] = list()
412
        if config.is_tariff_appended and not is_quick_mode:
413
            if energy_category_set is not None and len(energy_category_set) > 0:
414
                for energy_category_id in energy_category_set:
415
                    energy_category_tariff_dict = utilities.get_energy_category_tariffs(space['cost_center_id'],
416
                                                                                        energy_category_id,
417
                                                                                        reporting_start_datetime_utc,
418
                                                                                        reporting_end_datetime_utc)
419
                    tariff_timestamp_list = list()
420
                    tariff_value_list = list()
421
                    for k, v in energy_category_tariff_dict.items():
422
                        # convert k from utc to local
423
                        k = k + timedelta(minutes=timezone_offset)
424
                        tariff_timestamp_list.append(k.isoformat()[0:19])
425
                        tariff_value_list.append(v)
426
427
                    parameters_data['names'].append(_('Tariff') + '-'
428
                                                    + energy_category_dict[energy_category_id]['name'])
429
                    parameters_data['timestamps'].append(tariff_timestamp_list)
430
                    parameters_data['values'].append(tariff_value_list)
431
432
        ################################################################################################################
433
        # Step 7: construct the report
434
        ################################################################################################################
435
        if cursor_system:
436
            cursor_system.close()
437
        if cnx_system:
438
            cnx_system.close()
439
440
        if cursor_energy_prediction:
441
            cursor_energy_prediction.close()
442
        if cnx_energy_prediction:
443
            cnx_energy_prediction.close()
444
445
        if cursor_historical:
446
            cursor_historical.close()
447
        if cnx_historical:
448
            cnx_historical.close()
449
450
        result = dict()
451
452
        result['space'] = dict()
453
        result['space']['id'] = space['id']
454
        result['space']['name'] = space['name']
455
        result['space']['area'] = space['area']
456
        result['space']['number_of_occupants'] = space['number_of_occupants']
457
458
        result['base_period'] = dict()
459
        result['base_period']['names'] = list()
460
        result['base_period']['units'] = list()
461
        result['base_period']['timestamps'] = list()
462
        result['base_period']['values'] = list()
463
        result['base_period']['subtotals'] = list()
464
        result['base_period']['subtotals_in_kgce'] = list()
465
        result['base_period']['subtotals_in_kgco2e'] = list()
466
        result['base_period']['total_in_kgce'] = Decimal(0.0)
467
        result['base_period']['total_in_kgco2e'] = Decimal(0.0)
468
        if energy_category_set is not None and len(energy_category_set) > 0:
469
            for energy_category_id in energy_category_set:
470
                result['base_period']['names'].append(energy_category_dict[energy_category_id]['name'])
471
                result['base_period']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure'])
472
                result['base_period']['timestamps'].append(base[energy_category_id]['timestamps'])
473
                result['base_period']['values'].append(base[energy_category_id]['values'])
474
                result['base_period']['subtotals'].append(base[energy_category_id]['subtotal'])
475
                result['base_period']['subtotals_in_kgce'].append(base[energy_category_id]['subtotal_in_kgce'])
476
                result['base_period']['subtotals_in_kgco2e'].append(base[energy_category_id]['subtotal_in_kgco2e'])
477
                result['base_period']['total_in_kgce'] += base[energy_category_id]['subtotal_in_kgce']
478
                result['base_period']['total_in_kgco2e'] += base[energy_category_id]['subtotal_in_kgco2e']
479
480
        result['reporting_period'] = dict()
481
        result['reporting_period']['names'] = list()
482
        result['reporting_period']['energy_category_ids'] = list()
483
        result['reporting_period']['units'] = list()
484
        result['reporting_period']['timestamps'] = list()
485
        result['reporting_period']['values'] = list()
486
        result['reporting_period']['rates'] = list()
487
        result['reporting_period']['subtotals'] = list()
488
        result['reporting_period']['subtotals_in_kgce'] = list()
489
        result['reporting_period']['subtotals_in_kgco2e'] = list()
490
        result['reporting_period']['subtotals_per_unit_area'] = list()
491
        result['reporting_period']['subtotals_per_capita'] = list()
492
        result['reporting_period']['toppeaks'] = list()
493
        result['reporting_period']['onpeaks'] = list()
494
        result['reporting_period']['midpeaks'] = list()
495
        result['reporting_period']['offpeaks'] = list()
496
        result['reporting_period']['deeps'] = list()
497
        result['reporting_period']['increment_rates'] = list()
498
        result['reporting_period']['total_in_kgce'] = Decimal(0.0)
499
        result['reporting_period']['total_in_kgco2e'] = Decimal(0.0)
500
        result['reporting_period']['increment_rate_in_kgce'] = Decimal(0.0)
501
        result['reporting_period']['increment_rate_in_kgco2e'] = Decimal(0.0)
502
503
        if energy_category_set is not None and len(energy_category_set) > 0:
504
            for energy_category_id in energy_category_set:
505
                result['reporting_period']['names'].append(energy_category_dict[energy_category_id]['name'])
506
                result['reporting_period']['energy_category_ids'].append(energy_category_id)
507
                result['reporting_period']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure'])
508
                result['reporting_period']['timestamps'].append(reporting[energy_category_id]['timestamps'])
509
                result['reporting_period']['values'].append(reporting[energy_category_id]['values'])
510
                result['reporting_period']['subtotals'].append(reporting[energy_category_id]['subtotal'])
511
                result['reporting_period']['subtotals_in_kgce'].append(
512
                    reporting[energy_category_id]['subtotal_in_kgce'])
513
                result['reporting_period']['subtotals_in_kgco2e'].append(
514
                    reporting[energy_category_id]['subtotal_in_kgco2e'])
515
                result['reporting_period']['subtotals_per_unit_area'].append(
516
                    reporting[energy_category_id]['subtotal'] / space['area'] if space['area'] > 0.0 else None)
517
                result['reporting_period']['subtotals_per_capita'].append(
518
                    reporting[energy_category_id]['subtotal'] / space['number_of_occupants']
519
                    if space['number_of_occupants'] > 0.0 else None)
520
                result['reporting_period']['toppeaks'].append(reporting[energy_category_id]['toppeak'])
521
                result['reporting_period']['onpeaks'].append(reporting[energy_category_id]['onpeak'])
522
                result['reporting_period']['midpeaks'].append(reporting[energy_category_id]['midpeak'])
523
                result['reporting_period']['offpeaks'].append(reporting[energy_category_id]['offpeak'])
524
                result['reporting_period']['deeps'].append(reporting[energy_category_id]['deep'])
525
                result['reporting_period']['increment_rates'].append(
526
                    (reporting[energy_category_id]['subtotal'] - base[energy_category_id]['subtotal']) /
527
                    base[energy_category_id]['subtotal']
528
                    if base[energy_category_id]['subtotal'] > 0.0 else None)
529
                result['reporting_period']['total_in_kgce'] += reporting[energy_category_id]['subtotal_in_kgce']
530
                result['reporting_period']['total_in_kgco2e'] += reporting[energy_category_id]['subtotal_in_kgco2e']
531
532
                rate = list()
533
                for index, value in enumerate(reporting[energy_category_id]['values']):
534
                    if index < len(base[energy_category_id]['values']) \
535
                            and base[energy_category_id]['values'][index] != 0 and value != 0:
536
                        rate.append((value - base[energy_category_id]['values'][index])
537
                                    / base[energy_category_id]['values'][index])
538
                    else:
539
                        rate.append(None)
540
                result['reporting_period']['rates'].append(rate)
541
542
        result['reporting_period']['total_in_kgco2e_per_unit_area'] = \
543
            result['reporting_period']['total_in_kgce'] / space['area'] if space['area'] > 0.0 else None
544
545
        result['reporting_period']['total_in_kgco2e_per_capita'] = \
546
            result['reporting_period']['total_in_kgce'] / space['number_of_occupants'] \
547
            if space['number_of_occupants'] > 0.0 else None
548
549
        result['reporting_period']['increment_rate_in_kgce'] = \
550
            (result['reporting_period']['total_in_kgce'] - result['base_period']['total_in_kgce']) / \
551
            result['base_period']['total_in_kgce'] \
552
            if result['base_period']['total_in_kgce'] > Decimal(0.0) else None
553
554
        result['reporting_period']['total_in_kgce_per_unit_area'] = \
555
            result['reporting_period']['total_in_kgco2e'] / space['area'] if space['area'] > 0.0 else None
556
557
        result['reporting_period']['total_in_kgce_per_capita'] = \
558
            result['reporting_period']['total_in_kgco2e'] / space['number_of_occupants'] \
559
            if space['number_of_occupants'] > 0.0 else None
560
561
        result['reporting_period']['increment_rate_in_kgco2e'] = \
562
            (result['reporting_period']['total_in_kgco2e'] - result['base_period']['total_in_kgco2e']) / \
563
            result['base_period']['total_in_kgco2e'] \
564
            if result['base_period']['total_in_kgco2e'] > Decimal(0.0) else None
565
566
        result['parameters'] = {
567
            "names": parameters_data['names'],
568
            "timestamps": parameters_data['timestamps'],
569
            "values": parameters_data['values']
570
        }
571
572
        # export result to Excel file and then encode the file to base64 string
573
        # TODO
574
        # if not is_quick_mode:
575
        #     result['excel_bytes_base64'] = \
576
        #         excelexporters.spaceenergyprediction.export(result,
577
        #                                                     space['name'],
578
        #                                                     base_period_start_datetime_local,
579
        #                                                     base_period_end_datetime_local,
580
        #                                                     reporting_period_start_datetime_local,
581
        #                                                     reporting_period_end_datetime_local,
582
        #                                                     period_type,
583
        #                                                     language)
584
585
        resp.text = json.dumps(result)
586