Conditions | 117 |
Total Lines | 553 |
Code Lines | 422 |
Lines | 0 |
Ratio | 0 % |
Changes | 0 |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
Complex classes like reports.spaceprediction.Reporting.on_get() often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | import re |
||
33 | @staticmethod |
||
34 | def on_get(req, resp): |
||
35 | if 'API-KEY' not in req.headers or \ |
||
36 | not isinstance(req.headers['API-KEY'], str) or \ |
||
37 | len(str.strip(req.headers['API-KEY'])) == 0: |
||
38 | access_control(req) |
||
39 | else: |
||
40 | api_key_control(req) |
||
41 | print(req.params) |
||
42 | space_id = req.params.get('spaceid') |
||
43 | space_uuid = req.params.get('spaceuuid') |
||
44 | period_type = req.params.get('periodtype') |
||
45 | base_period_start_datetime_local = req.params.get('baseperiodstartdatetime') |
||
46 | base_period_end_datetime_local = req.params.get('baseperiodenddatetime') |
||
47 | reporting_period_start_datetime_local = req.params.get('reportingperiodstartdatetime') |
||
48 | reporting_period_end_datetime_local = req.params.get('reportingperiodenddatetime') |
||
49 | language = req.params.get('language') |
||
50 | quick_mode = req.params.get('quickmode') |
||
51 | |||
52 | ################################################################################################################ |
||
53 | # Step 1: valid parameters |
||
54 | ################################################################################################################ |
||
55 | if space_id is None and space_uuid is None: |
||
56 | raise falcon.HTTPError(status=falcon.HTTP_400, |
||
57 | title='API.BAD_REQUEST', |
||
58 | description='API.INVALID_SPACE_ID') |
||
59 | |||
60 | if space_id is not None: |
||
61 | space_id = str.strip(space_id) |
||
62 | if not space_id.isdigit() or int(space_id) <= 0: |
||
63 | raise falcon.HTTPError(status=falcon.HTTP_400, |
||
64 | title='API.BAD_REQUEST', |
||
65 | description='API.INVALID_SPACE_ID') |
||
66 | |||
67 | if space_uuid is not None: |
||
68 | regex = re.compile(r'^[a-f0-9]{8}-?[a-f0-9]{4}-?4[a-f0-9]{3}-?[89ab][a-f0-9]{3}-?[a-f0-9]{12}\Z', re.I) |
||
69 | match = regex.match(str.strip(space_uuid)) |
||
70 | if not bool(match): |
||
71 | raise falcon.HTTPError(status=falcon.HTTP_400, |
||
72 | title='API.BAD_REQUEST', |
||
73 | description='API.INVALID_SPACE_UUID') |
||
74 | |||
75 | if period_type is None: |
||
76 | raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST', |
||
77 | description='API.INVALID_PERIOD_TYPE') |
||
78 | else: |
||
79 | period_type = str.strip(period_type) |
||
80 | if period_type not in ['hourly', 'daily', 'weekly', 'monthly', 'yearly']: |
||
81 | raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST', |
||
82 | description='API.INVALID_PERIOD_TYPE') |
||
83 | |||
84 | timezone_offset = int(config.utc_offset[1:3]) * 60 + int(config.utc_offset[4:6]) |
||
85 | if config.utc_offset[0] == '-': |
||
86 | timezone_offset = -timezone_offset |
||
87 | |||
88 | base_start_datetime_utc = None |
||
89 | if base_period_start_datetime_local is not None and len(str.strip(base_period_start_datetime_local)) > 0: |
||
90 | base_period_start_datetime_local = str.strip(base_period_start_datetime_local) |
||
91 | try: |
||
92 | base_start_datetime_utc = datetime.strptime(base_period_start_datetime_local, '%Y-%m-%dT%H:%M:%S') |
||
93 | |||
94 | except ValueError: |
||
95 | raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST', |
||
96 | description="API.INVALID_BASE_PERIOD_START_DATETIME") |
||
97 | base_start_datetime_utc = \ |
||
98 | base_start_datetime_utc.replace(tzinfo=timezone.utc) - timedelta(minutes=timezone_offset) |
||
99 | # nomalize the start datetime |
||
100 | if config.minutes_to_count == 30 and base_start_datetime_utc.minute >= 30: |
||
101 | base_start_datetime_utc = base_start_datetime_utc.replace(minute=30, second=0, microsecond=0) |
||
102 | else: |
||
103 | base_start_datetime_utc = base_start_datetime_utc.replace(minute=0, second=0, microsecond=0) |
||
104 | |||
105 | base_end_datetime_utc = None |
||
106 | if base_period_end_datetime_local is not None and len(str.strip(base_period_end_datetime_local)) > 0: |
||
107 | base_period_end_datetime_local = str.strip(base_period_end_datetime_local) |
||
108 | try: |
||
109 | base_end_datetime_utc = datetime.strptime(base_period_end_datetime_local, '%Y-%m-%dT%H:%M:%S') |
||
110 | |||
111 | except ValueError: |
||
112 | raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST', |
||
113 | description="API.INVALID_BASE_PERIOD_END_DATETIME") |
||
114 | base_end_datetime_utc = \ |
||
115 | base_end_datetime_utc.replace(tzinfo=timezone.utc) - timedelta(minutes=timezone_offset) |
||
116 | |||
117 | if base_start_datetime_utc is not None and base_end_datetime_utc is not None and \ |
||
118 | base_start_datetime_utc >= base_end_datetime_utc: |
||
119 | raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST', |
||
120 | description='API.INVALID_BASE_PERIOD_END_DATETIME') |
||
121 | |||
122 | if reporting_period_start_datetime_local is None: |
||
123 | raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST', |
||
124 | description="API.INVALID_REPORTING_PERIOD_START_DATETIME") |
||
125 | else: |
||
126 | reporting_period_start_datetime_local = str.strip(reporting_period_start_datetime_local) |
||
127 | try: |
||
128 | reporting_start_datetime_utc = datetime.strptime(reporting_period_start_datetime_local, |
||
129 | '%Y-%m-%dT%H:%M:%S') |
||
130 | |||
131 | except ValueError: |
||
132 | raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST', |
||
133 | description="API.INVALID_REPORTING_PERIOD_START_DATETIME") |
||
134 | reporting_start_datetime_utc = \ |
||
135 | reporting_start_datetime_utc.replace(tzinfo=timezone.utc) - timedelta(minutes=timezone_offset) |
||
136 | # nomalize the start datetime |
||
137 | if config.minutes_to_count == 30 and reporting_start_datetime_utc.minute >= 30: |
||
138 | reporting_start_datetime_utc = reporting_start_datetime_utc.replace(minute=30, second=0, microsecond=0) |
||
139 | else: |
||
140 | reporting_start_datetime_utc = reporting_start_datetime_utc.replace(minute=0, second=0, microsecond=0) |
||
141 | |||
142 | if reporting_period_end_datetime_local is None: |
||
143 | raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST', |
||
144 | description="API.INVALID_REPORTING_PERIOD_END_DATETIME") |
||
145 | else: |
||
146 | reporting_period_end_datetime_local = str.strip(reporting_period_end_datetime_local) |
||
147 | try: |
||
148 | reporting_end_datetime_utc = datetime.strptime(reporting_period_end_datetime_local, |
||
149 | '%Y-%m-%dT%H:%M:%S').replace(tzinfo=timezone.utc) - \ |
||
150 | timedelta(minutes=timezone_offset) |
||
151 | except ValueError: |
||
152 | raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST', |
||
153 | description="API.INVALID_REPORTING_PERIOD_END_DATETIME") |
||
154 | |||
155 | if reporting_start_datetime_utc >= reporting_end_datetime_utc: |
||
156 | raise falcon.HTTPError(status=falcon.HTTP_400, title='API.BAD_REQUEST', |
||
157 | description='API.INVALID_REPORTING_PERIOD_END_DATETIME') |
||
158 | |||
159 | # if turn quick mode on, do not return parameters data and excel file |
||
160 | is_quick_mode = False |
||
161 | if quick_mode is not None and \ |
||
162 | len(str.strip(quick_mode)) > 0 and \ |
||
163 | str.lower(str.strip(quick_mode)) in ('true', 't', 'on', 'yes', 'y'): |
||
164 | is_quick_mode = True |
||
165 | |||
166 | trans = utilities.get_translation(language) |
||
167 | trans.install() |
||
168 | _ = trans.gettext |
||
169 | |||
170 | ################################################################################################################ |
||
171 | # Step 2: query the space |
||
172 | ################################################################################################################ |
||
173 | cnx_system = mysql.connector.connect(**config.myems_system_db) |
||
174 | cursor_system = cnx_system.cursor() |
||
175 | |||
176 | cnx_energy_prediction = mysql.connector.connect(**config.myems_energy_prediction_db) |
||
177 | cursor_energy_prediction = cnx_energy_prediction.cursor() |
||
178 | |||
179 | cnx_historical = mysql.connector.connect(**config.myems_historical_db) |
||
180 | cursor_historical = cnx_historical.cursor() |
||
181 | |||
182 | if space_id is not None: |
||
183 | cursor_system.execute(" SELECT id, name, area, number_of_occupants, cost_center_id " |
||
184 | " FROM tbl_spaces " |
||
185 | " WHERE id = %s ", (space_id,)) |
||
186 | row_space = cursor_system.fetchone() |
||
187 | elif space_uuid is not None: |
||
188 | cursor_system.execute(" SELECT id, name, area, number_of_occupants, cost_center_id " |
||
189 | " FROM tbl_spaces " |
||
190 | " WHERE uuid = %s ", (space_uuid,)) |
||
191 | row_space = cursor_system.fetchone() |
||
192 | |||
193 | if row_space is None: |
||
|
|||
194 | if cursor_system: |
||
195 | cursor_system.close() |
||
196 | if cnx_system: |
||
197 | cnx_system.close() |
||
198 | |||
199 | if cursor_energy_prediction: |
||
200 | cursor_energy_prediction.close() |
||
201 | if cnx_energy_prediction: |
||
202 | cnx_energy_prediction.close() |
||
203 | |||
204 | if cursor_historical: |
||
205 | cursor_historical.close() |
||
206 | if cnx_historical: |
||
207 | cnx_historical.close() |
||
208 | raise falcon.HTTPError(status=falcon.HTTP_404, title='API.NOT_FOUND', description='API.SPACE_NOT_FOUND') |
||
209 | |||
210 | space = dict() |
||
211 | space['id'] = row_space[0] |
||
212 | space['name'] = row_space[1] |
||
213 | space['area'] = row_space[2] |
||
214 | space['number_of_occupants'] = row_space[3] |
||
215 | space['cost_center_id'] = row_space[4] |
||
216 | |||
217 | ################################################################################################################ |
||
218 | # Step 3: query energy categories |
||
219 | ################################################################################################################ |
||
220 | energy_category_set = set() |
||
221 | # query energy categories in base period |
||
222 | cursor_energy_prediction.execute(" SELECT DISTINCT(energy_category_id) " |
||
223 | " FROM tbl_space_input_category_hourly " |
||
224 | " WHERE space_id = %s " |
||
225 | " AND start_datetime_utc >= %s " |
||
226 | " AND start_datetime_utc < %s ", |
||
227 | (space['id'], base_start_datetime_utc, base_end_datetime_utc)) |
||
228 | rows_energy_categories = cursor_energy_prediction.fetchall() |
||
229 | if rows_energy_categories is not None and len(rows_energy_categories) > 0: |
||
230 | for row_energy_category in rows_energy_categories: |
||
231 | energy_category_set.add(row_energy_category[0]) |
||
232 | |||
233 | # query energy categories in reporting period |
||
234 | cursor_energy_prediction.execute(" SELECT DISTINCT(energy_category_id) " |
||
235 | " FROM tbl_space_input_category_hourly " |
||
236 | " WHERE space_id = %s " |
||
237 | " AND start_datetime_utc >= %s " |
||
238 | " AND start_datetime_utc < %s ", |
||
239 | (space['id'], reporting_start_datetime_utc, reporting_end_datetime_utc)) |
||
240 | rows_energy_categories = cursor_energy_prediction.fetchall() |
||
241 | if rows_energy_categories is not None and len(rows_energy_categories) > 0: |
||
242 | for row_energy_category in rows_energy_categories: |
||
243 | energy_category_set.add(row_energy_category[0]) |
||
244 | |||
245 | # query all energy categories in base period and reporting period |
||
246 | cursor_system.execute(" SELECT id, name, unit_of_measure, kgce, kgco2e " |
||
247 | " FROM tbl_energy_categories " |
||
248 | " ORDER BY id ", ) |
||
249 | rows_energy_categories = cursor_system.fetchall() |
||
250 | if rows_energy_categories is None or len(rows_energy_categories) == 0: |
||
251 | if cursor_system: |
||
252 | cursor_system.close() |
||
253 | if cnx_system: |
||
254 | cnx_system.close() |
||
255 | |||
256 | if cursor_energy_prediction: |
||
257 | cursor_energy_prediction.close() |
||
258 | if cnx_energy_prediction: |
||
259 | cnx_energy_prediction.close() |
||
260 | |||
261 | if cursor_historical: |
||
262 | cursor_historical.close() |
||
263 | if cnx_historical: |
||
264 | cnx_historical.close() |
||
265 | raise falcon.HTTPError(status=falcon.HTTP_404, |
||
266 | title='API.NOT_FOUND', |
||
267 | description='API.ENERGY_CATEGORY_NOT_FOUND') |
||
268 | energy_category_dict = dict() |
||
269 | for row_energy_category in rows_energy_categories: |
||
270 | if row_energy_category[0] in energy_category_set: |
||
271 | energy_category_dict[row_energy_category[0]] = {"name": row_energy_category[1], |
||
272 | "unit_of_measure": row_energy_category[2], |
||
273 | "kgce": row_energy_category[3], |
||
274 | "kgco2e": row_energy_category[4]} |
||
275 | |||
276 | ################################################################################################################ |
||
277 | # Step 4: query base period energy prediction |
||
278 | ################################################################################################################ |
||
279 | base = dict() |
||
280 | if energy_category_set is not None and len(energy_category_set) > 0: |
||
281 | for energy_category_id in energy_category_set: |
||
282 | kgce = energy_category_dict[energy_category_id]['kgce'] |
||
283 | kgco2e = energy_category_dict[energy_category_id]['kgco2e'] |
||
284 | |||
285 | base[energy_category_id] = dict() |
||
286 | base[energy_category_id]['timestamps'] = list() |
||
287 | base[energy_category_id]['values'] = list() |
||
288 | base[energy_category_id]['subtotal'] = Decimal(0.0) |
||
289 | base[energy_category_id]['subtotal_in_kgce'] = Decimal(0.0) |
||
290 | base[energy_category_id]['subtotal_in_kgco2e'] = Decimal(0.0) |
||
291 | |||
292 | cursor_energy_prediction.execute(" SELECT start_datetime_utc, actual_value " |
||
293 | " FROM tbl_space_input_category_hourly " |
||
294 | " WHERE space_id = %s " |
||
295 | " AND energy_category_id = %s " |
||
296 | " AND start_datetime_utc >= %s " |
||
297 | " AND start_datetime_utc < %s " |
||
298 | " ORDER BY start_datetime_utc ", |
||
299 | (space['id'], |
||
300 | energy_category_id, |
||
301 | base_start_datetime_utc, |
||
302 | base_end_datetime_utc)) |
||
303 | rows_space_hourly = cursor_energy_prediction.fetchall() |
||
304 | |||
305 | rows_space_periodically = utilities.aggregate_hourly_data_by_period(rows_space_hourly, |
||
306 | base_start_datetime_utc, |
||
307 | base_end_datetime_utc, |
||
308 | period_type) |
||
309 | for row_space_periodically in rows_space_periodically: |
||
310 | current_datetime_local = row_space_periodically[0].replace(tzinfo=timezone.utc) + \ |
||
311 | timedelta(minutes=timezone_offset) |
||
312 | if period_type == 'hourly': |
||
313 | current_datetime = current_datetime_local.isoformat()[0:19] |
||
314 | elif period_type == 'daily': |
||
315 | current_datetime = current_datetime_local.isoformat()[0:10] |
||
316 | elif period_type == 'weekly': |
||
317 | current_datetime = current_datetime_local.isoformat()[0:10] |
||
318 | elif period_type == 'monthly': |
||
319 | current_datetime = current_datetime_local.isoformat()[0:7] |
||
320 | elif period_type == 'yearly': |
||
321 | current_datetime = current_datetime_local.isoformat()[0:4] |
||
322 | |||
323 | actual_value = Decimal(0.0) if row_space_periodically[1] is None else row_space_periodically[1] |
||
324 | base[energy_category_id]['timestamps'].append(current_datetime) |
||
325 | base[energy_category_id]['values'].append(actual_value) |
||
326 | base[energy_category_id]['subtotal'] += actual_value |
||
327 | base[energy_category_id]['subtotal_in_kgce'] += actual_value * kgce |
||
328 | base[energy_category_id]['subtotal_in_kgco2e'] += actual_value * kgco2e |
||
329 | |||
330 | ################################################################################################################ |
||
331 | # Step 5: query reporting period energy prediction |
||
332 | ################################################################################################################ |
||
333 | reporting = dict() |
||
334 | if energy_category_set is not None and len(energy_category_set) > 0: |
||
335 | for energy_category_id in energy_category_set: |
||
336 | kgce = energy_category_dict[energy_category_id]['kgce'] |
||
337 | kgco2e = energy_category_dict[energy_category_id]['kgco2e'] |
||
338 | |||
339 | reporting[energy_category_id] = dict() |
||
340 | reporting[energy_category_id]['timestamps'] = list() |
||
341 | reporting[energy_category_id]['values'] = list() |
||
342 | reporting[energy_category_id]['subtotal'] = Decimal(0.0) |
||
343 | reporting[energy_category_id]['subtotal_in_kgce'] = Decimal(0.0) |
||
344 | reporting[energy_category_id]['subtotal_in_kgco2e'] = Decimal(0.0) |
||
345 | reporting[energy_category_id]['toppeak'] = Decimal(0.0) |
||
346 | reporting[energy_category_id]['onpeak'] = Decimal(0.0) |
||
347 | reporting[energy_category_id]['midpeak'] = Decimal(0.0) |
||
348 | reporting[energy_category_id]['offpeak'] = Decimal(0.0) |
||
349 | reporting[energy_category_id]['deep'] = Decimal(0.0) |
||
350 | |||
351 | cursor_energy_prediction.execute(" SELECT start_datetime_utc, actual_value " |
||
352 | " FROM tbl_space_input_category_hourly " |
||
353 | " WHERE space_id = %s " |
||
354 | " AND energy_category_id = %s " |
||
355 | " AND start_datetime_utc >= %s " |
||
356 | " AND start_datetime_utc < %s " |
||
357 | " ORDER BY start_datetime_utc ", |
||
358 | (space['id'], |
||
359 | energy_category_id, |
||
360 | reporting_start_datetime_utc, |
||
361 | reporting_end_datetime_utc)) |
||
362 | rows_space_hourly = cursor_energy_prediction.fetchall() |
||
363 | |||
364 | rows_space_periodically = utilities.aggregate_hourly_data_by_period(rows_space_hourly, |
||
365 | reporting_start_datetime_utc, |
||
366 | reporting_end_datetime_utc, |
||
367 | period_type) |
||
368 | for row_space_periodically in rows_space_periodically: |
||
369 | current_datetime_local = row_space_periodically[0].replace(tzinfo=timezone.utc) + \ |
||
370 | timedelta(minutes=timezone_offset) |
||
371 | if period_type == 'hourly': |
||
372 | current_datetime = current_datetime_local.isoformat()[0:19] |
||
373 | elif period_type == 'daily': |
||
374 | current_datetime = current_datetime_local.isoformat()[0:10] |
||
375 | elif period_type == 'weekly': |
||
376 | current_datetime = current_datetime_local.isoformat()[0:10] |
||
377 | elif period_type == 'monthly': |
||
378 | current_datetime = current_datetime_local.isoformat()[0:7] |
||
379 | elif period_type == 'yearly': |
||
380 | current_datetime = current_datetime_local.isoformat()[0:4] |
||
381 | |||
382 | actual_value = Decimal(0.0) if row_space_periodically[1] is None else row_space_periodically[1] |
||
383 | reporting[energy_category_id]['timestamps'].append(current_datetime) |
||
384 | reporting[energy_category_id]['values'].append(actual_value) |
||
385 | reporting[energy_category_id]['subtotal'] += actual_value |
||
386 | reporting[energy_category_id]['subtotal_in_kgce'] += actual_value * kgce |
||
387 | reporting[energy_category_id]['subtotal_in_kgco2e'] += actual_value * kgco2e |
||
388 | |||
389 | energy_category_tariff_dict = utilities.get_energy_category_peak_types(space['cost_center_id'], |
||
390 | energy_category_id, |
||
391 | reporting_start_datetime_utc, |
||
392 | reporting_end_datetime_utc) |
||
393 | for row in rows_space_hourly: |
||
394 | peak_type = energy_category_tariff_dict.get(row[0], None) |
||
395 | if peak_type == 'toppeak': |
||
396 | reporting[energy_category_id]['toppeak'] += row[1] |
||
397 | elif peak_type == 'onpeak': |
||
398 | reporting[energy_category_id]['onpeak'] += row[1] |
||
399 | elif peak_type == 'midpeak': |
||
400 | reporting[energy_category_id]['midpeak'] += row[1] |
||
401 | elif peak_type == 'offpeak': |
||
402 | reporting[energy_category_id]['offpeak'] += row[1] |
||
403 | elif peak_type == 'deep': |
||
404 | reporting[energy_category_id]['deep'] += row[1] |
||
405 | ################################################################################################################ |
||
406 | # Step 6: query tariff data |
||
407 | ################################################################################################################ |
||
408 | parameters_data = dict() |
||
409 | parameters_data['names'] = list() |
||
410 | parameters_data['timestamps'] = list() |
||
411 | parameters_data['values'] = list() |
||
412 | if config.is_tariff_appended and not is_quick_mode: |
||
413 | if energy_category_set is not None and len(energy_category_set) > 0: |
||
414 | for energy_category_id in energy_category_set: |
||
415 | energy_category_tariff_dict = utilities.get_energy_category_tariffs(space['cost_center_id'], |
||
416 | energy_category_id, |
||
417 | reporting_start_datetime_utc, |
||
418 | reporting_end_datetime_utc) |
||
419 | tariff_timestamp_list = list() |
||
420 | tariff_value_list = list() |
||
421 | for k, v in energy_category_tariff_dict.items(): |
||
422 | # convert k from utc to local |
||
423 | k = k + timedelta(minutes=timezone_offset) |
||
424 | tariff_timestamp_list.append(k.isoformat()[0:19]) |
||
425 | tariff_value_list.append(v) |
||
426 | |||
427 | parameters_data['names'].append(_('Tariff') + '-' |
||
428 | + energy_category_dict[energy_category_id]['name']) |
||
429 | parameters_data['timestamps'].append(tariff_timestamp_list) |
||
430 | parameters_data['values'].append(tariff_value_list) |
||
431 | |||
432 | ################################################################################################################ |
||
433 | # Step 7: construct the report |
||
434 | ################################################################################################################ |
||
435 | if cursor_system: |
||
436 | cursor_system.close() |
||
437 | if cnx_system: |
||
438 | cnx_system.close() |
||
439 | |||
440 | if cursor_energy_prediction: |
||
441 | cursor_energy_prediction.close() |
||
442 | if cnx_energy_prediction: |
||
443 | cnx_energy_prediction.close() |
||
444 | |||
445 | if cursor_historical: |
||
446 | cursor_historical.close() |
||
447 | if cnx_historical: |
||
448 | cnx_historical.close() |
||
449 | |||
450 | result = dict() |
||
451 | |||
452 | result['space'] = dict() |
||
453 | result['space']['id'] = space['id'] |
||
454 | result['space']['name'] = space['name'] |
||
455 | result['space']['area'] = space['area'] |
||
456 | result['space']['number_of_occupants'] = space['number_of_occupants'] |
||
457 | |||
458 | result['base_period'] = dict() |
||
459 | result['base_period']['names'] = list() |
||
460 | result['base_period']['units'] = list() |
||
461 | result['base_period']['timestamps'] = list() |
||
462 | result['base_period']['values'] = list() |
||
463 | result['base_period']['subtotals'] = list() |
||
464 | result['base_period']['subtotals_in_kgce'] = list() |
||
465 | result['base_period']['subtotals_in_kgco2e'] = list() |
||
466 | result['base_period']['total_in_kgce'] = Decimal(0.0) |
||
467 | result['base_period']['total_in_kgco2e'] = Decimal(0.0) |
||
468 | if energy_category_set is not None and len(energy_category_set) > 0: |
||
469 | for energy_category_id in energy_category_set: |
||
470 | result['base_period']['names'].append(energy_category_dict[energy_category_id]['name']) |
||
471 | result['base_period']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure']) |
||
472 | result['base_period']['timestamps'].append(base[energy_category_id]['timestamps']) |
||
473 | result['base_period']['values'].append(base[energy_category_id]['values']) |
||
474 | result['base_period']['subtotals'].append(base[energy_category_id]['subtotal']) |
||
475 | result['base_period']['subtotals_in_kgce'].append(base[energy_category_id]['subtotal_in_kgce']) |
||
476 | result['base_period']['subtotals_in_kgco2e'].append(base[energy_category_id]['subtotal_in_kgco2e']) |
||
477 | result['base_period']['total_in_kgce'] += base[energy_category_id]['subtotal_in_kgce'] |
||
478 | result['base_period']['total_in_kgco2e'] += base[energy_category_id]['subtotal_in_kgco2e'] |
||
479 | |||
480 | result['reporting_period'] = dict() |
||
481 | result['reporting_period']['names'] = list() |
||
482 | result['reporting_period']['energy_category_ids'] = list() |
||
483 | result['reporting_period']['units'] = list() |
||
484 | result['reporting_period']['timestamps'] = list() |
||
485 | result['reporting_period']['values'] = list() |
||
486 | result['reporting_period']['rates'] = list() |
||
487 | result['reporting_period']['subtotals'] = list() |
||
488 | result['reporting_period']['subtotals_in_kgce'] = list() |
||
489 | result['reporting_period']['subtotals_in_kgco2e'] = list() |
||
490 | result['reporting_period']['subtotals_per_unit_area'] = list() |
||
491 | result['reporting_period']['subtotals_per_capita'] = list() |
||
492 | result['reporting_period']['toppeaks'] = list() |
||
493 | result['reporting_period']['onpeaks'] = list() |
||
494 | result['reporting_period']['midpeaks'] = list() |
||
495 | result['reporting_period']['offpeaks'] = list() |
||
496 | result['reporting_period']['deeps'] = list() |
||
497 | result['reporting_period']['increment_rates'] = list() |
||
498 | result['reporting_period']['total_in_kgce'] = Decimal(0.0) |
||
499 | result['reporting_period']['total_in_kgco2e'] = Decimal(0.0) |
||
500 | result['reporting_period']['increment_rate_in_kgce'] = Decimal(0.0) |
||
501 | result['reporting_period']['increment_rate_in_kgco2e'] = Decimal(0.0) |
||
502 | |||
503 | if energy_category_set is not None and len(energy_category_set) > 0: |
||
504 | for energy_category_id in energy_category_set: |
||
505 | result['reporting_period']['names'].append(energy_category_dict[energy_category_id]['name']) |
||
506 | result['reporting_period']['energy_category_ids'].append(energy_category_id) |
||
507 | result['reporting_period']['units'].append(energy_category_dict[energy_category_id]['unit_of_measure']) |
||
508 | result['reporting_period']['timestamps'].append(reporting[energy_category_id]['timestamps']) |
||
509 | result['reporting_period']['values'].append(reporting[energy_category_id]['values']) |
||
510 | result['reporting_period']['subtotals'].append(reporting[energy_category_id]['subtotal']) |
||
511 | result['reporting_period']['subtotals_in_kgce'].append( |
||
512 | reporting[energy_category_id]['subtotal_in_kgce']) |
||
513 | result['reporting_period']['subtotals_in_kgco2e'].append( |
||
514 | reporting[energy_category_id]['subtotal_in_kgco2e']) |
||
515 | result['reporting_period']['subtotals_per_unit_area'].append( |
||
516 | reporting[energy_category_id]['subtotal'] / space['area'] if space['area'] > 0.0 else None) |
||
517 | result['reporting_period']['subtotals_per_capita'].append( |
||
518 | reporting[energy_category_id]['subtotal'] / space['number_of_occupants'] |
||
519 | if space['number_of_occupants'] > 0.0 else None) |
||
520 | result['reporting_period']['toppeaks'].append(reporting[energy_category_id]['toppeak']) |
||
521 | result['reporting_period']['onpeaks'].append(reporting[energy_category_id]['onpeak']) |
||
522 | result['reporting_period']['midpeaks'].append(reporting[energy_category_id]['midpeak']) |
||
523 | result['reporting_period']['offpeaks'].append(reporting[energy_category_id]['offpeak']) |
||
524 | result['reporting_period']['deeps'].append(reporting[energy_category_id]['deep']) |
||
525 | result['reporting_period']['increment_rates'].append( |
||
526 | (reporting[energy_category_id]['subtotal'] - base[energy_category_id]['subtotal']) / |
||
527 | base[energy_category_id]['subtotal'] |
||
528 | if base[energy_category_id]['subtotal'] > 0.0 else None) |
||
529 | result['reporting_period']['total_in_kgce'] += reporting[energy_category_id]['subtotal_in_kgce'] |
||
530 | result['reporting_period']['total_in_kgco2e'] += reporting[energy_category_id]['subtotal_in_kgco2e'] |
||
531 | |||
532 | rate = list() |
||
533 | for index, value in enumerate(reporting[energy_category_id]['values']): |
||
534 | if index < len(base[energy_category_id]['values']) \ |
||
535 | and base[energy_category_id]['values'][index] != 0 and value != 0: |
||
536 | rate.append((value - base[energy_category_id]['values'][index]) |
||
537 | / base[energy_category_id]['values'][index]) |
||
538 | else: |
||
539 | rate.append(None) |
||
540 | result['reporting_period']['rates'].append(rate) |
||
541 | |||
542 | result['reporting_period']['total_in_kgco2e_per_unit_area'] = \ |
||
543 | result['reporting_period']['total_in_kgce'] / space['area'] if space['area'] > 0.0 else None |
||
544 | |||
545 | result['reporting_period']['total_in_kgco2e_per_capita'] = \ |
||
546 | result['reporting_period']['total_in_kgce'] / space['number_of_occupants'] \ |
||
547 | if space['number_of_occupants'] > 0.0 else None |
||
548 | |||
549 | result['reporting_period']['increment_rate_in_kgce'] = \ |
||
550 | (result['reporting_period']['total_in_kgce'] - result['base_period']['total_in_kgce']) / \ |
||
551 | result['base_period']['total_in_kgce'] \ |
||
552 | if result['base_period']['total_in_kgce'] > Decimal(0.0) else None |
||
553 | |||
554 | result['reporting_period']['total_in_kgce_per_unit_area'] = \ |
||
555 | result['reporting_period']['total_in_kgco2e'] / space['area'] if space['area'] > 0.0 else None |
||
556 | |||
557 | result['reporting_period']['total_in_kgce_per_capita'] = \ |
||
558 | result['reporting_period']['total_in_kgco2e'] / space['number_of_occupants'] \ |
||
559 | if space['number_of_occupants'] > 0.0 else None |
||
560 | |||
561 | result['reporting_period']['increment_rate_in_kgco2e'] = \ |
||
562 | (result['reporting_period']['total_in_kgco2e'] - result['base_period']['total_in_kgco2e']) / \ |
||
563 | result['base_period']['total_in_kgco2e'] \ |
||
564 | if result['base_period']['total_in_kgco2e'] > Decimal(0.0) else None |
||
565 | |||
566 | result['parameters'] = { |
||
567 | "names": parameters_data['names'], |
||
568 | "timestamps": parameters_data['timestamps'], |
||
569 | "values": parameters_data['values'] |
||
570 | } |
||
571 | |||
572 | # export result to Excel file and then encode the file to base64 string |
||
573 | # TODO |
||
574 | # if not is_quick_mode: |
||
575 | # result['excel_bytes_base64'] = \ |
||
576 | # excelexporters.spaceenergyprediction.export(result, |
||
577 | # space['name'], |
||
578 | # base_period_start_datetime_local, |
||
579 | # base_period_end_datetime_local, |
||
580 | # reporting_period_start_datetime_local, |
||
581 | # reporting_period_end_datetime_local, |
||
582 | # period_type, |
||
583 | # language) |
||
584 | |||
585 | resp.text = json.dumps(result) |
||
586 |