| Total Complexity | 275 |
| Total Lines | 1150 |
| Duplicated Lines | 48.96 % |
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like core.utilities often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | import collections |
||
| 2 | import statistics |
||
| 3 | from datetime import datetime, timedelta |
||
| 4 | from decimal import Decimal |
||
| 5 | import mysql.connector |
||
| 6 | import config |
||
| 7 | import gettext |
||
| 8 | |||
| 9 | |||
| 10 | ######################################################################################################################## |
||
| 11 | # Aggregate hourly data by period |
||
| 12 | # |
||
| 13 | # This function aggregates hourly energy data into different time periods (hourly, daily, weekly, monthly, yearly). |
||
| 14 | # It processes raw hourly data and groups it according to the specified period type for reporting and analysis. |
||
| 15 | # |
||
| 16 | # Args: |
||
| 17 | # rows_hourly: List of tuples containing (start_datetime_utc, actual_value) for hourly data |
||
| 18 | # Should belong to one energy_category_id |
||
| 19 | # start_datetime_utc: Start datetime in UTC for the aggregation period |
||
| 20 | # end_datetime_utc: End datetime in UTC for the aggregation period |
||
| 21 | # period_type: Period type for aggregation - 'hourly', 'daily', 'weekly', 'monthly', or 'yearly' |
||
| 22 | # |
||
| 23 | # Returns: |
||
| 24 | # List of tuples containing (datetime_utc, aggregated_value) for the specified period type |
||
| 25 | # |
||
| 26 | # Note: This procedure doesn't work with multiple energy categories |
||
| 27 | ######################################################################################################################## |
||
| 28 | def aggregate_hourly_data_by_period(rows_hourly, start_datetime_utc, end_datetime_utc, period_type): |
||
| 29 | # Validate input parameters |
||
| 30 | if start_datetime_utc is None or \ |
||
| 31 | end_datetime_utc is None or \ |
||
| 32 | start_datetime_utc >= end_datetime_utc or \ |
||
| 33 | period_type not in ('hourly', 'daily', 'weekly', 'monthly', 'yearly'): |
||
| 34 | return list() |
||
| 35 | |||
| 36 | # Remove timezone info for consistent processing |
||
| 37 | start_datetime_utc = start_datetime_utc.replace(tzinfo=None) |
||
| 38 | end_datetime_utc = end_datetime_utc.replace(tzinfo=None) |
||
| 39 | |||
| 40 | # Process hourly aggregation |
||
| 41 | if period_type == "hourly": |
||
| 42 | result_rows_hourly = list() |
||
| 43 | # TODO: add config.working_day_start_time_local |
||
| 44 | # TODO: add config.minutes_to_count |
||
| 45 | current_datetime_utc = start_datetime_utc.replace(minute=0, second=0, microsecond=0, tzinfo=None) |
||
| 46 | while current_datetime_utc <= end_datetime_utc: |
||
| 47 | subtotal = None |
||
| 48 | # Sum values within the current hour period |
||
| 49 | for row in rows_hourly: |
||
| 50 | if current_datetime_utc <= row[0] < current_datetime_utc + \ |
||
| 51 | timedelta(minutes=config.minutes_to_count): |
||
| 52 | if row[1] is not None: |
||
| 53 | if subtotal is None: |
||
| 54 | subtotal = row[1] |
||
| 55 | else: |
||
| 56 | subtotal += row[1] |
||
| 57 | result_rows_hourly.append((current_datetime_utc, subtotal)) |
||
| 58 | current_datetime_utc += timedelta(minutes=config.minutes_to_count) |
||
| 59 | |||
| 60 | return result_rows_hourly |
||
| 61 | |||
| 62 | # Process daily aggregation |
||
| 63 | elif period_type == "daily": |
||
| 64 | result_rows_daily = list() |
||
| 65 | # TODO: add config.working_day_start_time_local |
||
| 66 | # TODO: add config.minutes_to_count |
||
| 67 | # Calculate the start datetime in UTC of the first day in local timezone |
||
| 68 | start_datetime_local = start_datetime_utc + timedelta(hours=int(config.utc_offset[1:3])) |
||
| 69 | current_datetime_utc = start_datetime_local.replace(hour=0) - timedelta(hours=int(config.utc_offset[1:3])) |
||
| 70 | while current_datetime_utc <= end_datetime_utc: |
||
| 71 | subtotal = None |
||
| 72 | for row in rows_hourly: |
||
| 73 | if current_datetime_utc <= row[0] < current_datetime_utc + timedelta(days=1): |
||
| 74 | if row[1] is not None: |
||
| 75 | if subtotal is None: |
||
| 76 | subtotal = row[1] |
||
| 77 | else: |
||
| 78 | subtotal += row[1] |
||
| 79 | result_rows_daily.append((current_datetime_utc, subtotal)) |
||
| 80 | current_datetime_utc += timedelta(days=1) |
||
| 81 | |||
| 82 | return result_rows_daily |
||
| 83 | |||
| 84 | elif period_type == 'weekly': |
||
| 85 | result_rows_weekly = list() |
||
| 86 | # todo: add config.working_day_start_time_local |
||
| 87 | # todo: add config.minutes_to_count |
||
| 88 | # calculate the start datetime in utc of the monday in the first week in local |
||
| 89 | start_datetime_local = start_datetime_utc + timedelta(hours=int(config.utc_offset[1:3])) |
||
| 90 | weekday = start_datetime_local.weekday() |
||
| 91 | current_datetime_utc = \ |
||
| 92 | start_datetime_local.replace(hour=0) - timedelta(days=weekday, hours=int(config.utc_offset[1:3])) |
||
| 93 | while current_datetime_utc <= end_datetime_utc: |
||
| 94 | |||
| 95 | next_datetime_utc = current_datetime_utc + timedelta(days=7) |
||
| 96 | subtotal = None |
||
| 97 | for row in rows_hourly: |
||
| 98 | if current_datetime_utc <= row[0] < next_datetime_utc: |
||
| 99 | if row[1] is not None: |
||
| 100 | if subtotal is None: |
||
| 101 | subtotal = row[1] |
||
| 102 | else: |
||
| 103 | subtotal += row[1] |
||
| 104 | result_rows_weekly.append((current_datetime_utc, subtotal)) |
||
| 105 | current_datetime_utc = next_datetime_utc |
||
| 106 | |||
| 107 | return result_rows_weekly |
||
| 108 | |||
| 109 | elif period_type == "monthly": |
||
| 110 | result_rows_monthly = list() |
||
| 111 | # todo: add config.working_day_start_time_local |
||
| 112 | # todo: add config.minutes_to_count |
||
| 113 | # calculate the start datetime the first day in the first month in local |
||
| 114 | start_datetime_local = start_datetime_utc + timedelta(hours=int(config.utc_offset[1:3])) |
||
| 115 | current_datetime_local = start_datetime_local.replace(day=1, hour=0, minute=0, |
||
| 116 | second=0, microsecond=0) |
||
| 117 | end_datetime_local = end_datetime_utc + timedelta(hours=int(config.utc_offset[1:3])) |
||
| 118 | while current_datetime_local <= end_datetime_local: |
||
| 119 | # calculate the next datetime in local |
||
| 120 | if current_datetime_local.month < 12: |
||
| 121 | next_datetime_local = datetime(year=current_datetime_local.year, |
||
| 122 | month=current_datetime_local.month + 1, |
||
| 123 | day=1, hour=0, minute=0, second=0, microsecond=0, tzinfo=None) |
||
| 124 | elif current_datetime_local.month == 12: |
||
| 125 | next_datetime_local = datetime(year=current_datetime_local.year + 1, |
||
| 126 | month=1, |
||
| 127 | day=1, hour=0, minute=0, second=0, microsecond=0, tzinfo=None) |
||
| 128 | current_datetime_utc = current_datetime_local - timedelta(hours=int(config.utc_offset[1:3])) |
||
| 129 | next_datetime_utc = next_datetime_local - timedelta(hours=int(config.utc_offset[1:3])) |
||
|
|
|||
| 130 | subtotal = None |
||
| 131 | for row in rows_hourly: |
||
| 132 | if current_datetime_utc <= row[0] < next_datetime_utc: |
||
| 133 | if row[1] is not None: |
||
| 134 | if subtotal is None: |
||
| 135 | subtotal = row[1] |
||
| 136 | else: |
||
| 137 | subtotal += row[1] |
||
| 138 | |||
| 139 | result_rows_monthly.append((current_datetime_utc, subtotal)) |
||
| 140 | current_datetime_local = next_datetime_local |
||
| 141 | |||
| 142 | return result_rows_monthly |
||
| 143 | |||
| 144 | elif period_type == "yearly": |
||
| 145 | result_rows_yearly = list() |
||
| 146 | # todo: add config.working_day_start_time_local |
||
| 147 | # todo: add config.minutes_to_count |
||
| 148 | # calculate the start datetime in utc of the first day in the first year in local |
||
| 149 | start_datetime_local = start_datetime_utc + timedelta(hours=int(config.utc_offset[1:3])) |
||
| 150 | current_datetime_utc = start_datetime_local.replace(month=1, day=1, hour=0) - timedelta( |
||
| 151 | hours=int(config.utc_offset[1:3])) |
||
| 152 | |||
| 153 | while current_datetime_utc <= end_datetime_utc: |
||
| 154 | # calculate the next datetime in utc |
||
| 155 | # todo: timedelta of year |
||
| 156 | next_datetime_utc = datetime(year=current_datetime_utc.year + 2, |
||
| 157 | month=1, |
||
| 158 | day=1, |
||
| 159 | hour=current_datetime_utc.hour, |
||
| 160 | minute=current_datetime_utc.minute, |
||
| 161 | second=current_datetime_utc.second, |
||
| 162 | microsecond=current_datetime_utc.microsecond, |
||
| 163 | tzinfo=current_datetime_utc.tzinfo) - timedelta(days=1) |
||
| 164 | subtotal = None |
||
| 165 | for row in rows_hourly: |
||
| 166 | if current_datetime_utc <= row[0] < next_datetime_utc: |
||
| 167 | if row[1] is not None: |
||
| 168 | if subtotal is None: |
||
| 169 | subtotal = row[1] |
||
| 170 | else: |
||
| 171 | subtotal += row[1] |
||
| 172 | |||
| 173 | result_rows_yearly.append((current_datetime_utc, subtotal)) |
||
| 174 | current_datetime_utc = next_datetime_utc |
||
| 175 | return result_rows_yearly |
||
| 176 | else: |
||
| 177 | return list() |
||
| 178 | |||
| 179 | |||
| 180 | ######################################################################################################################## |
||
| 181 | # Get tariffs by energy category |
||
| 182 | ######################################################################################################################## |
||
| 183 | View Code Duplication | def get_energy_category_tariffs(cost_center_id, energy_category_id, start_datetime_utc, end_datetime_utc): |
|
| 184 | # todo: validate parameters |
||
| 185 | if cost_center_id is None: |
||
| 186 | return dict() |
||
| 187 | |||
| 188 | start_datetime_utc = start_datetime_utc.replace(tzinfo=None) |
||
| 189 | end_datetime_utc = end_datetime_utc.replace(tzinfo=None) |
||
| 190 | |||
| 191 | # get timezone offset in minutes, this value will be returned to client |
||
| 192 | timezone_offset = int(config.utc_offset[1:3]) * 60 + int(config.utc_offset[4:6]) |
||
| 193 | if config.utc_offset[0] == '-': |
||
| 194 | timezone_offset = -timezone_offset |
||
| 195 | |||
| 196 | tariff_dict = collections.OrderedDict() |
||
| 197 | |||
| 198 | cnx = None |
||
| 199 | cursor = None |
||
| 200 | try: |
||
| 201 | cnx = mysql.connector.connect(**config.myems_system_db) |
||
| 202 | cursor = cnx.cursor() |
||
| 203 | query_tariffs = (" SELECT t.id, t.valid_from_datetime_utc, t.valid_through_datetime_utc " |
||
| 204 | " FROM tbl_tariffs t, tbl_cost_centers_tariffs cct " |
||
| 205 | " WHERE t.energy_category_id = %s AND " |
||
| 206 | " t.id = cct.tariff_id AND " |
||
| 207 | " cct.cost_center_id = %s AND " |
||
| 208 | " t.valid_through_datetime_utc >= %s AND " |
||
| 209 | " t.valid_from_datetime_utc <= %s " |
||
| 210 | " ORDER BY t.valid_from_datetime_utc ") |
||
| 211 | cursor.execute(query_tariffs, (energy_category_id, cost_center_id, start_datetime_utc, end_datetime_utc,)) |
||
| 212 | rows_tariffs = cursor.fetchall() |
||
| 213 | except InterfaceError as ex: |
||
| 214 | print("Failed to connect request") |
||
| 215 | if cnx: |
||
| 216 | cnx.close() |
||
| 217 | if cursor: |
||
| 218 | cursor.close() |
||
| 219 | return dict() |
||
| 220 | except OperationalError as ex: |
||
| 221 | print("Failed to operate request") |
||
| 222 | if cnx: |
||
| 223 | cnx.close() |
||
| 224 | if cursor: |
||
| 225 | cursor.close() |
||
| 226 | return dict() |
||
| 227 | except ProgrammingError as ex: |
||
| 228 | print("Failed to SQL request") |
||
| 229 | if cnx: |
||
| 230 | cnx.close() |
||
| 231 | if cursor: |
||
| 232 | cursor.close() |
||
| 233 | return dict() |
||
| 234 | except DataError as ex: |
||
| 235 | print("Failed to SQL Data request") |
||
| 236 | if cnx: |
||
| 237 | cnx.close() |
||
| 238 | if cursor: |
||
| 239 | cursor.close() |
||
| 240 | return dict() |
||
| 241 | except Exception as ex: |
||
| 242 | print('write_log:' + str(ex)) |
||
| 243 | if cnx: |
||
| 244 | cnx.close() |
||
| 245 | if cursor: |
||
| 246 | cursor.close() |
||
| 247 | return dict() |
||
| 248 | |||
| 249 | if rows_tariffs is None or len(rows_tariffs) == 0: |
||
| 250 | if cursor: |
||
| 251 | cursor.close() |
||
| 252 | if cnx: |
||
| 253 | cnx.close() |
||
| 254 | return dict() |
||
| 255 | |||
| 256 | for row in rows_tariffs: |
||
| 257 | tariff_dict[row[0]] = {'valid_from_datetime_utc': row[1], |
||
| 258 | 'valid_through_datetime_utc': row[2], |
||
| 259 | 'rates': list()} |
||
| 260 | |||
| 261 | try: |
||
| 262 | query_timeofuse_tariffs = (" SELECT tariff_id, start_time_of_day, end_time_of_day, price " |
||
| 263 | " FROM tbl_tariffs_timeofuses " |
||
| 264 | " WHERE tariff_id IN ( " + ', '.join(map(str, tariff_dict.keys())) + ")" |
||
| 265 | " ORDER BY tariff_id, start_time_of_day ") |
||
| 266 | cursor.execute(query_timeofuse_tariffs, ) |
||
| 267 | rows_timeofuse_tariffs = cursor.fetchall() |
||
| 268 | except InterfaceError as ex: |
||
| 269 | print("Failed to connect request") |
||
| 270 | if cnx: |
||
| 271 | cnx.close() |
||
| 272 | if cursor: |
||
| 273 | cursor.close() |
||
| 274 | return dict() |
||
| 275 | except OperationalError as ex: |
||
| 276 | print("Failed to operate request") |
||
| 277 | if cnx: |
||
| 278 | cnx.close() |
||
| 279 | if cursor: |
||
| 280 | cursor.close() |
||
| 281 | return dict() |
||
| 282 | except ProgrammingError as ex: |
||
| 283 | print("Failed to SQL request") |
||
| 284 | if cnx: |
||
| 285 | cnx.close() |
||
| 286 | if cursor: |
||
| 287 | cursor.close() |
||
| 288 | return dict() |
||
| 289 | except DataError as ex: |
||
| 290 | print("Failed to SQL Data request") |
||
| 291 | if cnx: |
||
| 292 | cnx.close() |
||
| 293 | if cursor: |
||
| 294 | cursor.close() |
||
| 295 | return dict() |
||
| 296 | except Exception as ex: |
||
| 297 | print('write_log:' + str(ex)) |
||
| 298 | if cnx: |
||
| 299 | cnx.close() |
||
| 300 | if cursor: |
||
| 301 | cursor.close() |
||
| 302 | return dict() |
||
| 303 | |||
| 304 | if cursor: |
||
| 305 | cursor.close() |
||
| 306 | if cnx: |
||
| 307 | cnx.close() |
||
| 308 | |||
| 309 | if rows_timeofuse_tariffs is None or len(rows_timeofuse_tariffs) == 0: |
||
| 310 | return dict() |
||
| 311 | |||
| 312 | for row in rows_timeofuse_tariffs: |
||
| 313 | tariff_dict[row[0]]['rates'].append({'start_time_of_day': row[1], |
||
| 314 | 'end_time_of_day': row[2], |
||
| 315 | 'price': row[3]}) |
||
| 316 | |||
| 317 | result = dict() |
||
| 318 | for tariff_id, tariff_value in tariff_dict.items(): |
||
| 319 | current_datetime_utc = tariff_value['valid_from_datetime_utc'] |
||
| 320 | while current_datetime_utc < tariff_value['valid_through_datetime_utc']: |
||
| 321 | for rate in tariff_value['rates']: |
||
| 322 | current_datetime_local = current_datetime_utc + timedelta(minutes=timezone_offset) |
||
| 323 | seconds_since_midnight = (current_datetime_local - |
||
| 324 | current_datetime_local.replace(hour=0, |
||
| 325 | second=0, |
||
| 326 | microsecond=0, |
||
| 327 | tzinfo=None)).total_seconds() |
||
| 328 | if rate['start_time_of_day'].total_seconds() <= \ |
||
| 329 | seconds_since_midnight < rate['end_time_of_day'].total_seconds(): |
||
| 330 | result[current_datetime_utc] = rate['price'] |
||
| 331 | break |
||
| 332 | |||
| 333 | # start from the next time slot |
||
| 334 | current_datetime_utc += timedelta(minutes=config.minutes_to_count) |
||
| 335 | |||
| 336 | return {k: v for k, v in result.items() if start_datetime_utc <= k <= end_datetime_utc} |
||
| 337 | |||
| 338 | |||
| 339 | ######################################################################################################################## |
||
| 340 | # Get peak types of tariff by energy category |
||
| 341 | # peak types: toppeak, onpeak, midpeak, offpeak, deep |
||
| 342 | ######################################################################################################################## |
||
| 343 | View Code Duplication | def get_energy_category_peak_types(cost_center_id, energy_category_id, start_datetime_utc, end_datetime_utc): |
|
| 344 | # todo: validate parameters |
||
| 345 | if cost_center_id is None: |
||
| 346 | return dict() |
||
| 347 | |||
| 348 | start_datetime_utc = start_datetime_utc.replace(tzinfo=None) |
||
| 349 | end_datetime_utc = end_datetime_utc.replace(tzinfo=None) |
||
| 350 | |||
| 351 | # get timezone offset in minutes, this value will be returned to client |
||
| 352 | timezone_offset = int(config.utc_offset[1:3]) * 60 + int(config.utc_offset[4:6]) |
||
| 353 | if config.utc_offset[0] == '-': |
||
| 354 | timezone_offset = -timezone_offset |
||
| 355 | |||
| 356 | tariff_dict = collections.OrderedDict() |
||
| 357 | |||
| 358 | cnx = None |
||
| 359 | cursor = None |
||
| 360 | try: |
||
| 361 | cnx = mysql.connector.connect(**config.myems_system_db) |
||
| 362 | cursor = cnx.cursor() |
||
| 363 | query_tariffs = (" SELECT t.id, t.valid_from_datetime_utc, t.valid_through_datetime_utc " |
||
| 364 | " FROM tbl_tariffs t, tbl_cost_centers_tariffs cct " |
||
| 365 | " WHERE t.energy_category_id = %s AND " |
||
| 366 | " t.id = cct.tariff_id AND " |
||
| 367 | " cct.cost_center_id = %s AND " |
||
| 368 | " t.valid_through_datetime_utc >= %s AND " |
||
| 369 | " t.valid_from_datetime_utc <= %s " |
||
| 370 | " ORDER BY t.valid_from_datetime_utc ") |
||
| 371 | cursor.execute(query_tariffs, (energy_category_id, cost_center_id, start_datetime_utc, end_datetime_utc,)) |
||
| 372 | rows_tariffs = cursor.fetchall() |
||
| 373 | except InterfaceError as ex: |
||
| 374 | print("Failed to connect request") |
||
| 375 | if cnx: |
||
| 376 | cnx.close() |
||
| 377 | if cursor: |
||
| 378 | cursor.close() |
||
| 379 | return dict() |
||
| 380 | except OperationalError as ex: |
||
| 381 | print("Failed to operate request") |
||
| 382 | if cnx: |
||
| 383 | cnx.close() |
||
| 384 | if cursor: |
||
| 385 | cursor.close() |
||
| 386 | return dict() |
||
| 387 | except ProgrammingError as ex: |
||
| 388 | print("Failed to SQL request") |
||
| 389 | if cnx: |
||
| 390 | cnx.close() |
||
| 391 | if cursor: |
||
| 392 | cursor.close() |
||
| 393 | return dict() |
||
| 394 | except DataError as ex: |
||
| 395 | print("Failed to SQL Data request") |
||
| 396 | if cnx: |
||
| 397 | cnx.close() |
||
| 398 | if cursor: |
||
| 399 | cursor.close() |
||
| 400 | return dict() |
||
| 401 | except Exception as ex: |
||
| 402 | print('write_log:' + str(ex)) |
||
| 403 | if cnx: |
||
| 404 | cnx.close() |
||
| 405 | if cursor: |
||
| 406 | cursor.close() |
||
| 407 | return dict() |
||
| 408 | |||
| 409 | if rows_tariffs is None or len(rows_tariffs) == 0: |
||
| 410 | if cursor: |
||
| 411 | cursor.close() |
||
| 412 | if cnx: |
||
| 413 | cnx.close() |
||
| 414 | return dict() |
||
| 415 | |||
| 416 | for row in rows_tariffs: |
||
| 417 | tariff_dict[row[0]] = {'valid_from_datetime_utc': row[1], |
||
| 418 | 'valid_through_datetime_utc': row[2], |
||
| 419 | 'rates': list()} |
||
| 420 | |||
| 421 | try: |
||
| 422 | query_timeofuse_tariffs = (" SELECT tariff_id, start_time_of_day, end_time_of_day, peak_type " |
||
| 423 | " FROM tbl_tariffs_timeofuses " |
||
| 424 | " WHERE tariff_id IN ( " + ', '.join(map(str, tariff_dict.keys())) + ")" |
||
| 425 | " ORDER BY tariff_id, start_time_of_day ") |
||
| 426 | cursor.execute(query_timeofuse_tariffs, ) |
||
| 427 | rows_timeofuse_tariffs = cursor.fetchall() |
||
| 428 | except InterfaceError as ex: |
||
| 429 | print("Failed to connect request") |
||
| 430 | if cnx: |
||
| 431 | cnx.close() |
||
| 432 | if cursor: |
||
| 433 | cursor.close() |
||
| 434 | return dict() |
||
| 435 | except OperationalError as ex: |
||
| 436 | print("Failed to operate request") |
||
| 437 | if cnx: |
||
| 438 | cnx.close() |
||
| 439 | if cursor: |
||
| 440 | cursor.close() |
||
| 441 | return dict() |
||
| 442 | except ProgrammingError as ex: |
||
| 443 | print("Failed to SQL request") |
||
| 444 | if cnx: |
||
| 445 | cnx.close() |
||
| 446 | if cursor: |
||
| 447 | cursor.close() |
||
| 448 | return dict() |
||
| 449 | except DataError as ex: |
||
| 450 | print("Failed to SQL Data request") |
||
| 451 | if cnx: |
||
| 452 | cnx.close() |
||
| 453 | if cursor: |
||
| 454 | cursor.close() |
||
| 455 | return dict() |
||
| 456 | except Exception as ex: |
||
| 457 | print('write_log:' + str(ex)) |
||
| 458 | if cnx: |
||
| 459 | cnx.close() |
||
| 460 | if cursor: |
||
| 461 | cursor.close() |
||
| 462 | return dict() |
||
| 463 | |||
| 464 | if cursor: |
||
| 465 | cursor.close() |
||
| 466 | if cnx: |
||
| 467 | cnx.close() |
||
| 468 | |||
| 469 | if rows_timeofuse_tariffs is None or len(rows_timeofuse_tariffs) == 0: |
||
| 470 | return dict() |
||
| 471 | |||
| 472 | for row in rows_timeofuse_tariffs: |
||
| 473 | tariff_dict[row[0]]['rates'].append({'start_time_of_day': row[1], |
||
| 474 | 'end_time_of_day': row[2], |
||
| 475 | 'peak_type': row[3]}) |
||
| 476 | |||
| 477 | result = dict() |
||
| 478 | for tariff_id, tariff_value in tariff_dict.items(): |
||
| 479 | current_datetime_utc = tariff_value['valid_from_datetime_utc'] |
||
| 480 | while current_datetime_utc < tariff_value['valid_through_datetime_utc']: |
||
| 481 | for rate in tariff_value['rates']: |
||
| 482 | current_datetime_local = current_datetime_utc + timedelta(minutes=timezone_offset) |
||
| 483 | seconds_since_midnight = (current_datetime_local - |
||
| 484 | current_datetime_local.replace(hour=0, |
||
| 485 | second=0, |
||
| 486 | microsecond=0, |
||
| 487 | tzinfo=None)).total_seconds() |
||
| 488 | if rate['start_time_of_day'].total_seconds() <= \ |
||
| 489 | seconds_since_midnight < rate['end_time_of_day'].total_seconds(): |
||
| 490 | result[current_datetime_utc] = rate['peak_type'] |
||
| 491 | break |
||
| 492 | |||
| 493 | # start from the next time slot |
||
| 494 | current_datetime_utc += timedelta(minutes=config.minutes_to_count) |
||
| 495 | |||
| 496 | return {k: v for k, v in result.items() if start_datetime_utc <= k <= end_datetime_utc} |
||
| 497 | |||
| 498 | |||
| 499 | ######################################################################################################################## |
||
| 500 | # Averaging calculator of hourly data by period |
||
| 501 | # rows_hourly: list of (start_datetime_utc, actual_value), should belong to one energy_category_id |
||
| 502 | # start_datetime_utc: start datetime in utc |
||
| 503 | # end_datetime_utc: end datetime in utc |
||
| 504 | # period_type: use one of the period types, 'hourly', 'daily', 'weekly', 'monthly' and 'yearly' |
||
| 505 | # Returns: periodically data of average and maximum |
||
| 506 | # Note: this procedure doesn't work with multiple energy categories |
||
| 507 | ######################################################################################################################## |
||
| 508 | def averaging_hourly_data_by_period(rows_hourly, start_datetime_utc, end_datetime_utc, period_type): |
||
| 509 | # todo: validate parameters |
||
| 510 | if start_datetime_utc is None or \ |
||
| 511 | end_datetime_utc is None or \ |
||
| 512 | start_datetime_utc >= end_datetime_utc or \ |
||
| 513 | period_type not in ('hourly', 'daily', 'weekly', 'monthly', 'yearly'): |
||
| 514 | return list(), None, None |
||
| 515 | |||
| 516 | start_datetime_utc = start_datetime_utc.replace(tzinfo=None) |
||
| 517 | end_datetime_utc = end_datetime_utc.replace(tzinfo=None) |
||
| 518 | |||
| 519 | if period_type == "hourly": |
||
| 520 | result_rows_hourly = list() |
||
| 521 | # todo: add config.working_day_start_time_local |
||
| 522 | # todo: add config.minutes_to_count |
||
| 523 | total = Decimal(0.0) |
||
| 524 | maximum = None |
||
| 525 | counter = 0 |
||
| 526 | current_datetime_utc = start_datetime_utc.replace(minute=0, second=0, microsecond=0, tzinfo=None) |
||
| 527 | View Code Duplication | while current_datetime_utc <= end_datetime_utc: |
|
| 528 | sub_total = Decimal(0.0) |
||
| 529 | sub_maximum = None |
||
| 530 | sub_counter = 0 |
||
| 531 | for row in rows_hourly: |
||
| 532 | if current_datetime_utc <= row[0] < current_datetime_utc + \ |
||
| 533 | timedelta(minutes=config.minutes_to_count): |
||
| 534 | sub_total += row[1] |
||
| 535 | if sub_maximum is None: |
||
| 536 | sub_maximum = row[1] |
||
| 537 | elif sub_maximum < row[1]: |
||
| 538 | sub_maximum = row[1] |
||
| 539 | sub_counter += 1 |
||
| 540 | |||
| 541 | sub_average = (sub_total / sub_counter) if sub_counter > 0 else None |
||
| 542 | result_rows_hourly.append((current_datetime_utc, sub_average, sub_maximum)) |
||
| 543 | |||
| 544 | total += sub_total |
||
| 545 | counter += sub_counter |
||
| 546 | if sub_maximum is None: |
||
| 547 | pass |
||
| 548 | elif maximum is None: |
||
| 549 | maximum = sub_maximum |
||
| 550 | elif maximum < sub_maximum: |
||
| 551 | maximum = sub_maximum |
||
| 552 | |||
| 553 | current_datetime_utc += timedelta(minutes=config.minutes_to_count) |
||
| 554 | |||
| 555 | average = total / counter if counter > 0 else None |
||
| 556 | return result_rows_hourly, average, maximum |
||
| 557 | |||
| 558 | elif period_type == "daily": |
||
| 559 | result_rows_daily = list() |
||
| 560 | # todo: add config.working_day_start_time_local |
||
| 561 | # todo: add config.minutes_to_count |
||
| 562 | total = Decimal(0.0) |
||
| 563 | maximum = None |
||
| 564 | counter = 0 |
||
| 565 | # calculate the start datetime in utc of the first day in local |
||
| 566 | start_datetime_local = start_datetime_utc + timedelta(hours=int(config.utc_offset[1:3])) |
||
| 567 | current_datetime_utc = start_datetime_local.replace(hour=0) - timedelta(hours=int(config.utc_offset[1:3])) |
||
| 568 | View Code Duplication | while current_datetime_utc <= end_datetime_utc: |
|
| 569 | sub_total = Decimal(0.0) |
||
| 570 | sub_maximum = None |
||
| 571 | sub_counter = 0 |
||
| 572 | for row in rows_hourly: |
||
| 573 | if current_datetime_utc <= row[0] < current_datetime_utc + timedelta(days=1): |
||
| 574 | sub_total += row[1] |
||
| 575 | if sub_maximum is None: |
||
| 576 | sub_maximum = row[1] |
||
| 577 | elif sub_maximum < row[1]: |
||
| 578 | sub_maximum = row[1] |
||
| 579 | sub_counter += 1 |
||
| 580 | |||
| 581 | sub_average = (sub_total / sub_counter) if sub_counter > 0 else None |
||
| 582 | result_rows_daily.append((current_datetime_utc, sub_average, sub_maximum)) |
||
| 583 | total += sub_total |
||
| 584 | counter += sub_counter |
||
| 585 | if sub_maximum is None: |
||
| 586 | pass |
||
| 587 | elif maximum is None: |
||
| 588 | maximum = sub_maximum |
||
| 589 | elif maximum < sub_maximum: |
||
| 590 | maximum = sub_maximum |
||
| 591 | current_datetime_utc += timedelta(days=1) |
||
| 592 | |||
| 593 | average = total / counter if counter > 0 else None |
||
| 594 | return result_rows_daily, average, maximum |
||
| 595 | |||
| 596 | elif period_type == 'weekly': |
||
| 597 | result_rows_weekly = list() |
||
| 598 | # todo: add config.working_day_start_time_local |
||
| 599 | # todo: add config.minutes_to_count |
||
| 600 | total = Decimal(0.0) |
||
| 601 | maximum = None |
||
| 602 | counter = 0 |
||
| 603 | # calculate the start datetime in utc of the monday in the first week in local |
||
| 604 | start_datetime_local = start_datetime_utc + timedelta(hours=int(config.utc_offset[1:3])) |
||
| 605 | weekday = start_datetime_local.weekday() |
||
| 606 | current_datetime_utc = \ |
||
| 607 | start_datetime_local.replace(hour=0) - timedelta(days=weekday, hours=int(config.utc_offset[1:3])) |
||
| 608 | View Code Duplication | while current_datetime_utc <= end_datetime_utc: |
|
| 609 | sub_total = Decimal(0.0) |
||
| 610 | sub_maximum = None |
||
| 611 | sub_counter = 0 |
||
| 612 | for row in rows_hourly: |
||
| 613 | if current_datetime_utc <= row[0] < current_datetime_utc + timedelta(days=7): |
||
| 614 | sub_total += row[1] |
||
| 615 | if sub_maximum is None: |
||
| 616 | sub_maximum = row[1] |
||
| 617 | elif sub_maximum < row[1]: |
||
| 618 | sub_maximum = row[1] |
||
| 619 | sub_counter += 1 |
||
| 620 | |||
| 621 | sub_average = (sub_total / sub_counter) if sub_counter > 0 else None |
||
| 622 | result_rows_weekly.append((current_datetime_utc, sub_average, sub_maximum)) |
||
| 623 | total += sub_total |
||
| 624 | counter += sub_counter |
||
| 625 | if sub_maximum is None: |
||
| 626 | pass |
||
| 627 | elif maximum is None: |
||
| 628 | maximum = sub_maximum |
||
| 629 | elif maximum < sub_maximum: |
||
| 630 | maximum = sub_maximum |
||
| 631 | current_datetime_utc += timedelta(days=7) |
||
| 632 | |||
| 633 | average = total / counter if counter > 0 else None |
||
| 634 | return result_rows_weekly, average, maximum |
||
| 635 | |||
| 636 | elif period_type == "monthly": |
||
| 637 | result_rows_monthly = list() |
||
| 638 | # todo: add config.working_day_start_time_local |
||
| 639 | # todo: add config.minutes_to_count |
||
| 640 | total = Decimal(0.0) |
||
| 641 | maximum = None |
||
| 642 | counter = 0 |
||
| 643 | # calculate the start datetime in utc of the first day in the first month in local |
||
| 644 | start_datetime_local = start_datetime_utc + timedelta(hours=int(config.utc_offset[1:3])) |
||
| 645 | current_datetime_utc = \ |
||
| 646 | start_datetime_local.replace(day=1, hour=0) - timedelta(hours=int(config.utc_offset[1:3])) |
||
| 647 | |||
| 648 | while current_datetime_utc <= end_datetime_utc: |
||
| 649 | # calculate the next datetime in utc |
||
| 650 | View Code Duplication | if current_datetime_utc.month == 1: |
|
| 651 | temp_day = 28 |
||
| 652 | ny = current_datetime_utc.year |
||
| 653 | if (ny % 100 != 0 and ny % 4 == 0) or (ny % 100 == 0 and ny % 400 == 0): |
||
| 654 | temp_day = 29 |
||
| 655 | |||
| 656 | next_datetime_utc = datetime(year=current_datetime_utc.year, |
||
| 657 | month=current_datetime_utc.month + 1, |
||
| 658 | day=temp_day, |
||
| 659 | hour=current_datetime_utc.hour, |
||
| 660 | minute=current_datetime_utc.minute, |
||
| 661 | second=0, |
||
| 662 | microsecond=0, |
||
| 663 | tzinfo=None) |
||
| 664 | elif current_datetime_utc.month == 2: |
||
| 665 | next_datetime_utc = datetime(year=current_datetime_utc.year, |
||
| 666 | month=current_datetime_utc.month + 1, |
||
| 667 | day=31, |
||
| 668 | hour=current_datetime_utc.hour, |
||
| 669 | minute=current_datetime_utc.minute, |
||
| 670 | second=0, |
||
| 671 | microsecond=0, |
||
| 672 | tzinfo=None) |
||
| 673 | elif current_datetime_utc.month in [3, 5, 8, 10]: |
||
| 674 | next_datetime_utc = datetime(year=current_datetime_utc.year, |
||
| 675 | month=current_datetime_utc.month + 1, |
||
| 676 | day=30, |
||
| 677 | hour=current_datetime_utc.hour, |
||
| 678 | minute=current_datetime_utc.minute, |
||
| 679 | second=0, |
||
| 680 | microsecond=0, |
||
| 681 | tzinfo=None) |
||
| 682 | elif current_datetime_utc.month == 7: |
||
| 683 | next_datetime_utc = datetime(year=current_datetime_utc.year, |
||
| 684 | month=current_datetime_utc.month + 1, |
||
| 685 | day=31, |
||
| 686 | hour=current_datetime_utc.hour, |
||
| 687 | minute=current_datetime_utc.minute, |
||
| 688 | second=0, |
||
| 689 | microsecond=0, |
||
| 690 | tzinfo=None) |
||
| 691 | elif current_datetime_utc.month in [4, 6, 9, 11]: |
||
| 692 | next_datetime_utc = datetime(year=current_datetime_utc.year, |
||
| 693 | month=current_datetime_utc.month + 1, |
||
| 694 | day=31, |
||
| 695 | hour=current_datetime_utc.hour, |
||
| 696 | minute=current_datetime_utc.minute, |
||
| 697 | second=0, |
||
| 698 | microsecond=0, |
||
| 699 | tzinfo=None) |
||
| 700 | elif current_datetime_utc.month == 12: |
||
| 701 | next_datetime_utc = datetime(year=current_datetime_utc.year + 1, |
||
| 702 | month=1, |
||
| 703 | day=31, |
||
| 704 | hour=current_datetime_utc.hour, |
||
| 705 | minute=current_datetime_utc.minute, |
||
| 706 | second=0, |
||
| 707 | microsecond=0, |
||
| 708 | tzinfo=None) |
||
| 709 | |||
| 710 | sub_total = Decimal(0.0) |
||
| 711 | sub_maximum = None |
||
| 712 | sub_counter = 0 |
||
| 713 | for row in rows_hourly: |
||
| 714 | if current_datetime_utc <= row[0] < next_datetime_utc: |
||
| 715 | sub_total += row[1] |
||
| 716 | if sub_maximum is None: |
||
| 717 | sub_maximum = row[1] |
||
| 718 | elif sub_maximum < row[1]: |
||
| 719 | sub_maximum = row[1] |
||
| 720 | sub_counter += 1 |
||
| 721 | |||
| 722 | sub_average = (sub_total / sub_counter) if sub_counter > 0 else None |
||
| 723 | result_rows_monthly.append((current_datetime_utc, sub_average, sub_maximum)) |
||
| 724 | total += sub_total |
||
| 725 | counter += sub_counter |
||
| 726 | if sub_maximum is None: |
||
| 727 | pass |
||
| 728 | elif maximum is None: |
||
| 729 | maximum = sub_maximum |
||
| 730 | elif maximum < sub_maximum: |
||
| 731 | maximum = sub_maximum |
||
| 732 | current_datetime_utc = next_datetime_utc |
||
| 733 | |||
| 734 | average = total / counter if counter > 0 else None |
||
| 735 | return result_rows_monthly, average, maximum |
||
| 736 | |||
| 737 | elif period_type == "yearly": |
||
| 738 | result_rows_yearly = list() |
||
| 739 | # todo: add config.working_day_start_time_local |
||
| 740 | # todo: add config.minutes_to_count |
||
| 741 | total = Decimal(0.0) |
||
| 742 | maximum = None |
||
| 743 | counter = 0 |
||
| 744 | # calculate the start datetime in utc of the first day in the first month in local |
||
| 745 | start_datetime_local = start_datetime_utc + timedelta(hours=int(config.utc_offset[1:3])) |
||
| 746 | current_datetime_utc = start_datetime_local.replace(month=1, day=1, hour=0) - timedelta( |
||
| 747 | hours=int(config.utc_offset[1:3])) |
||
| 748 | |||
| 749 | while current_datetime_utc <= end_datetime_utc: |
||
| 750 | # calculate the next datetime in utc |
||
| 751 | # todo: timedelta of year |
||
| 752 | next_datetime_utc = datetime(year=current_datetime_utc.year + 2, |
||
| 753 | month=1, |
||
| 754 | day=1, |
||
| 755 | hour=current_datetime_utc.hour, |
||
| 756 | minute=current_datetime_utc.minute, |
||
| 757 | second=current_datetime_utc.second, |
||
| 758 | microsecond=current_datetime_utc.microsecond, |
||
| 759 | tzinfo=current_datetime_utc.tzinfo) - timedelta(days=1) |
||
| 760 | sub_total = Decimal(0.0) |
||
| 761 | sub_maximum = None |
||
| 762 | sub_counter = 0 |
||
| 763 | for row in rows_hourly: |
||
| 764 | if current_datetime_utc <= row[0] < next_datetime_utc: |
||
| 765 | sub_total += row[1] |
||
| 766 | if sub_maximum is None: |
||
| 767 | sub_maximum = row[1] |
||
| 768 | elif sub_maximum < row[1]: |
||
| 769 | sub_maximum = row[1] |
||
| 770 | sub_counter += 1 |
||
| 771 | |||
| 772 | sub_average = (sub_total / sub_counter) if sub_counter > 0 else None |
||
| 773 | result_rows_yearly.append((current_datetime_utc, sub_average, sub_maximum)) |
||
| 774 | total += sub_total |
||
| 775 | counter += sub_counter |
||
| 776 | if sub_maximum is None: |
||
| 777 | pass |
||
| 778 | elif maximum is None: |
||
| 779 | maximum = sub_maximum |
||
| 780 | elif maximum < sub_maximum: |
||
| 781 | maximum = sub_maximum |
||
| 782 | current_datetime_utc = next_datetime_utc |
||
| 783 | |||
| 784 | average = total / counter if counter > 0 else None |
||
| 785 | return result_rows_yearly, average, maximum |
||
| 786 | else: |
||
| 787 | return list(), None, None |
||
| 788 | |||
| 789 | |||
| 790 | ######################################################################################################################## |
||
| 791 | # Statistics calculator of hourly data by period |
||
| 792 | # rows_hourly: list of (start_datetime_utc, actual_value), should belong to one energy_category_id |
||
| 793 | # start_datetime_utc: start datetime in utc |
||
| 794 | # end_datetime_utc: end datetime in utc |
||
| 795 | # period_type: use one of the period types, 'hourly', 'daily', 'weekly', 'monthly' and 'yearly' |
||
| 796 | # Returns: periodically data of values and statistics of mean, median, minimum, maximum, stdev and variance |
||
| 797 | # Note: this procedure doesn't work with multiple energy categories |
||
| 798 | ######################################################################################################################## |
||
| 799 | def statistics_hourly_data_by_period(rows_hourly, start_datetime_utc, end_datetime_utc, period_type): |
||
| 800 | # todo: validate parameters |
||
| 801 | if start_datetime_utc is None or \ |
||
| 802 | end_datetime_utc is None or \ |
||
| 803 | start_datetime_utc >= end_datetime_utc or \ |
||
| 804 | period_type not in ('hourly', 'daily', 'weekly', 'monthly', 'yearly'): |
||
| 805 | return list(), None, None, None, None, None, None |
||
| 806 | |||
| 807 | start_datetime_utc = start_datetime_utc.replace(tzinfo=None) |
||
| 808 | end_datetime_utc = end_datetime_utc.replace(tzinfo=None) |
||
| 809 | |||
| 810 | if period_type == "hourly": |
||
| 811 | result_rows_hourly = list() |
||
| 812 | sample_data = list() |
||
| 813 | # todo: add config.working_day_start_time_local |
||
| 814 | # todo: add config.minutes_to_count |
||
| 815 | counter = 0 |
||
| 816 | mean = None |
||
| 817 | median = None |
||
| 818 | minimum = None |
||
| 819 | maximum = None |
||
| 820 | stdev = None |
||
| 821 | variance = None |
||
| 822 | current_datetime_utc = start_datetime_utc.replace(minute=0, second=0, microsecond=0, tzinfo=None) |
||
| 823 | View Code Duplication | while current_datetime_utc <= end_datetime_utc: |
|
| 824 | sub_total = Decimal(0.0) |
||
| 825 | for row in rows_hourly: |
||
| 826 | if current_datetime_utc <= row[0] < current_datetime_utc + \ |
||
| 827 | timedelta(minutes=config.minutes_to_count): |
||
| 828 | sub_total += row[1] |
||
| 829 | |||
| 830 | result_rows_hourly.append((current_datetime_utc, sub_total)) |
||
| 831 | sample_data.append(sub_total) |
||
| 832 | |||
| 833 | counter += 1 |
||
| 834 | if minimum is None: |
||
| 835 | minimum = sub_total |
||
| 836 | elif minimum > sub_total: |
||
| 837 | minimum = sub_total |
||
| 838 | |||
| 839 | if maximum is None: |
||
| 840 | maximum = sub_total |
||
| 841 | elif maximum < sub_total: |
||
| 842 | maximum = sub_total |
||
| 843 | |||
| 844 | current_datetime_utc += timedelta(minutes=config.minutes_to_count) |
||
| 845 | |||
| 846 | if len(sample_data) > 1: |
||
| 847 | mean = statistics.mean(sample_data) |
||
| 848 | median = statistics.median(sample_data) |
||
| 849 | stdev = statistics.stdev(sample_data) |
||
| 850 | variance = statistics.variance(sample_data) |
||
| 851 | |||
| 852 | return result_rows_hourly, mean, median, minimum, maximum, stdev, variance |
||
| 853 | |||
| 854 | elif period_type == "daily": |
||
| 855 | result_rows_daily = list() |
||
| 856 | sample_data = list() |
||
| 857 | # todo: add config.working_day_start_time_local |
||
| 858 | # todo: add config.minutes_to_count |
||
| 859 | counter = 0 |
||
| 860 | mean = None |
||
| 861 | median = None |
||
| 862 | minimum = None |
||
| 863 | maximum = None |
||
| 864 | stdev = None |
||
| 865 | variance = None |
||
| 866 | # calculate the start datetime in utc of the first day in local |
||
| 867 | start_datetime_local = start_datetime_utc + timedelta(hours=int(config.utc_offset[1:3])) |
||
| 868 | current_datetime_utc = start_datetime_local.replace(hour=0) - timedelta(hours=int(config.utc_offset[1:3])) |
||
| 869 | View Code Duplication | while current_datetime_utc <= end_datetime_utc: |
|
| 870 | sub_total = Decimal(0.0) |
||
| 871 | for row in rows_hourly: |
||
| 872 | if current_datetime_utc <= row[0] < current_datetime_utc + timedelta(days=1): |
||
| 873 | sub_total += row[1] |
||
| 874 | |||
| 875 | result_rows_daily.append((current_datetime_utc, sub_total)) |
||
| 876 | sample_data.append(sub_total) |
||
| 877 | |||
| 878 | counter += 1 |
||
| 879 | if minimum is None: |
||
| 880 | minimum = sub_total |
||
| 881 | elif minimum > sub_total: |
||
| 882 | minimum = sub_total |
||
| 883 | |||
| 884 | if maximum is None: |
||
| 885 | maximum = sub_total |
||
| 886 | elif maximum < sub_total: |
||
| 887 | maximum = sub_total |
||
| 888 | current_datetime_utc += timedelta(days=1) |
||
| 889 | |||
| 890 | if len(sample_data) > 1: |
||
| 891 | mean = statistics.mean(sample_data) |
||
| 892 | median = statistics.median(sample_data) |
||
| 893 | stdev = statistics.stdev(sample_data) |
||
| 894 | variance = statistics.variance(sample_data) |
||
| 895 | |||
| 896 | return result_rows_daily, mean, median, minimum, maximum, stdev, variance |
||
| 897 | |||
| 898 | elif period_type == "weekly": |
||
| 899 | result_rows_weekly = list() |
||
| 900 | sample_data = list() |
||
| 901 | # todo: add config.working_day_start_time_local |
||
| 902 | # todo: add config.minutes_to_count |
||
| 903 | counter = 0 |
||
| 904 | mean = None |
||
| 905 | median = None |
||
| 906 | minimum = None |
||
| 907 | maximum = None |
||
| 908 | stdev = None |
||
| 909 | variance = None |
||
| 910 | # calculate the start datetime in utc of the monday in the first week in local |
||
| 911 | start_datetime_local = start_datetime_utc + timedelta(hours=int(config.utc_offset[1:3])) |
||
| 912 | weekday = start_datetime_local.weekday() |
||
| 913 | current_datetime_utc = \ |
||
| 914 | start_datetime_local.replace(hour=0) - timedelta(days=weekday, hours=int(config.utc_offset[1:3])) |
||
| 915 | View Code Duplication | while current_datetime_utc <= end_datetime_utc: |
|
| 916 | sub_total = Decimal(0.0) |
||
| 917 | for row in rows_hourly: |
||
| 918 | if current_datetime_utc <= row[0] < current_datetime_utc + timedelta(days=7): |
||
| 919 | sub_total += row[1] |
||
| 920 | |||
| 921 | result_rows_weekly.append((current_datetime_utc, sub_total)) |
||
| 922 | sample_data.append(sub_total) |
||
| 923 | |||
| 924 | counter += 1 |
||
| 925 | if minimum is None: |
||
| 926 | minimum = sub_total |
||
| 927 | elif minimum > sub_total: |
||
| 928 | minimum = sub_total |
||
| 929 | |||
| 930 | if maximum is None: |
||
| 931 | maximum = sub_total |
||
| 932 | elif maximum < sub_total: |
||
| 933 | maximum = sub_total |
||
| 934 | current_datetime_utc += timedelta(days=7) |
||
| 935 | |||
| 936 | if len(sample_data) > 1: |
||
| 937 | mean = statistics.mean(sample_data) |
||
| 938 | median = statistics.median(sample_data) |
||
| 939 | stdev = statistics.stdev(sample_data) |
||
| 940 | variance = statistics.variance(sample_data) |
||
| 941 | |||
| 942 | return result_rows_weekly, mean, median, minimum, maximum, stdev, variance |
||
| 943 | |||
| 944 | elif period_type == "monthly": |
||
| 945 | result_rows_monthly = list() |
||
| 946 | sample_data = list() |
||
| 947 | # todo: add config.working_day_start_time_local |
||
| 948 | # todo: add config.minutes_to_count |
||
| 949 | counter = 0 |
||
| 950 | mean = None |
||
| 951 | median = None |
||
| 952 | minimum = None |
||
| 953 | maximum = None |
||
| 954 | stdev = None |
||
| 955 | variance = None |
||
| 956 | # calculate the start datetime in utc of the first day in the first month in local |
||
| 957 | start_datetime_local = start_datetime_utc + timedelta(hours=int(config.utc_offset[1:3])) |
||
| 958 | current_datetime_utc = \ |
||
| 959 | start_datetime_local.replace(day=1, hour=0) - timedelta(hours=int(config.utc_offset[1:3])) |
||
| 960 | |||
| 961 | while current_datetime_utc <= end_datetime_utc: |
||
| 962 | # calculate the next datetime in utc |
||
| 963 | View Code Duplication | if current_datetime_utc.month == 1: |
|
| 964 | temp_day = 28 |
||
| 965 | ny = current_datetime_utc.year |
||
| 966 | if (ny % 100 != 0 and ny % 4 == 0) or (ny % 100 == 0 and ny % 400 == 0): |
||
| 967 | temp_day = 29 |
||
| 968 | |||
| 969 | next_datetime_utc = datetime(year=current_datetime_utc.year, |
||
| 970 | month=current_datetime_utc.month + 1, |
||
| 971 | day=temp_day, |
||
| 972 | hour=current_datetime_utc.hour, |
||
| 973 | minute=current_datetime_utc.minute, |
||
| 974 | second=0, |
||
| 975 | microsecond=0, |
||
| 976 | tzinfo=None) |
||
| 977 | elif current_datetime_utc.month == 2: |
||
| 978 | next_datetime_utc = datetime(year=current_datetime_utc.year, |
||
| 979 | month=current_datetime_utc.month + 1, |
||
| 980 | day=31, |
||
| 981 | hour=current_datetime_utc.hour, |
||
| 982 | minute=current_datetime_utc.minute, |
||
| 983 | second=0, |
||
| 984 | microsecond=0, |
||
| 985 | tzinfo=None) |
||
| 986 | elif current_datetime_utc.month in [3, 5, 8, 10]: |
||
| 987 | next_datetime_utc = datetime(year=current_datetime_utc.year, |
||
| 988 | month=current_datetime_utc.month + 1, |
||
| 989 | day=30, |
||
| 990 | hour=current_datetime_utc.hour, |
||
| 991 | minute=current_datetime_utc.minute, |
||
| 992 | second=0, |
||
| 993 | microsecond=0, |
||
| 994 | tzinfo=None) |
||
| 995 | elif current_datetime_utc.month == 7: |
||
| 996 | next_datetime_utc = datetime(year=current_datetime_utc.year, |
||
| 997 | month=current_datetime_utc.month + 1, |
||
| 998 | day=31, |
||
| 999 | hour=current_datetime_utc.hour, |
||
| 1000 | minute=current_datetime_utc.minute, |
||
| 1001 | second=0, |
||
| 1002 | microsecond=0, |
||
| 1003 | tzinfo=None) |
||
| 1004 | elif current_datetime_utc.month in [4, 6, 9, 11]: |
||
| 1005 | next_datetime_utc = datetime(year=current_datetime_utc.year, |
||
| 1006 | month=current_datetime_utc.month + 1, |
||
| 1007 | day=31, |
||
| 1008 | hour=current_datetime_utc.hour, |
||
| 1009 | minute=current_datetime_utc.minute, |
||
| 1010 | second=0, |
||
| 1011 | microsecond=0, |
||
| 1012 | tzinfo=None) |
||
| 1013 | elif current_datetime_utc.month == 12: |
||
| 1014 | next_datetime_utc = datetime(year=current_datetime_utc.year + 1, |
||
| 1015 | month=1, |
||
| 1016 | day=31, |
||
| 1017 | hour=current_datetime_utc.hour, |
||
| 1018 | minute=current_datetime_utc.minute, |
||
| 1019 | second=0, |
||
| 1020 | microsecond=0, |
||
| 1021 | tzinfo=None) |
||
| 1022 | |||
| 1023 | sub_total = Decimal(0.0) |
||
| 1024 | for row in rows_hourly: |
||
| 1025 | if current_datetime_utc <= row[0] < next_datetime_utc: |
||
| 1026 | sub_total += row[1] |
||
| 1027 | |||
| 1028 | result_rows_monthly.append((current_datetime_utc, sub_total)) |
||
| 1029 | sample_data.append(sub_total) |
||
| 1030 | |||
| 1031 | counter += 1 |
||
| 1032 | if minimum is None: |
||
| 1033 | minimum = sub_total |
||
| 1034 | elif minimum > sub_total: |
||
| 1035 | minimum = sub_total |
||
| 1036 | |||
| 1037 | if maximum is None: |
||
| 1038 | maximum = sub_total |
||
| 1039 | elif maximum < sub_total: |
||
| 1040 | maximum = sub_total |
||
| 1041 | current_datetime_utc = next_datetime_utc |
||
| 1042 | |||
| 1043 | if len(sample_data) > 1: |
||
| 1044 | mean = statistics.mean(sample_data) |
||
| 1045 | median = statistics.median(sample_data) |
||
| 1046 | stdev = statistics.stdev(sample_data) |
||
| 1047 | variance = statistics.variance(sample_data) |
||
| 1048 | |||
| 1049 | return result_rows_monthly, mean, median, minimum, maximum, stdev, variance |
||
| 1050 | |||
| 1051 | elif period_type == "yearly": |
||
| 1052 | result_rows_yearly = list() |
||
| 1053 | sample_data = list() |
||
| 1054 | # todo: add config.working_day_start_time_local |
||
| 1055 | # todo: add config.minutes_to_count |
||
| 1056 | mean = None |
||
| 1057 | median = None |
||
| 1058 | minimum = None |
||
| 1059 | maximum = None |
||
| 1060 | stdev = None |
||
| 1061 | variance = None |
||
| 1062 | # calculate the start datetime in utc of the first day in the first month in local |
||
| 1063 | start_datetime_local = start_datetime_utc + timedelta(hours=int(config.utc_offset[1:3])) |
||
| 1064 | current_datetime_utc = start_datetime_local.replace(month=1, day=1, hour=0) - timedelta( |
||
| 1065 | hours=int(config.utc_offset[1:3])) |
||
| 1066 | |||
| 1067 | while current_datetime_utc <= end_datetime_utc: |
||
| 1068 | # calculate the next datetime in utc |
||
| 1069 | # todo: timedelta of year |
||
| 1070 | next_datetime_utc = datetime(year=current_datetime_utc.year + 2, |
||
| 1071 | month=1, |
||
| 1072 | day=1, |
||
| 1073 | hour=current_datetime_utc.hour, |
||
| 1074 | minute=current_datetime_utc.minute, |
||
| 1075 | second=current_datetime_utc.second, |
||
| 1076 | microsecond=current_datetime_utc.microsecond, |
||
| 1077 | tzinfo=current_datetime_utc.tzinfo) - timedelta(days=1) |
||
| 1078 | sub_total = Decimal(0.0) |
||
| 1079 | for row in rows_hourly: |
||
| 1080 | if current_datetime_utc <= row[0] < next_datetime_utc: |
||
| 1081 | sub_total += row[1] |
||
| 1082 | |||
| 1083 | result_rows_yearly.append((current_datetime_utc, sub_total)) |
||
| 1084 | sample_data.append(sub_total) |
||
| 1085 | |||
| 1086 | if minimum is None: |
||
| 1087 | minimum = sub_total |
||
| 1088 | elif minimum > sub_total: |
||
| 1089 | minimum = sub_total |
||
| 1090 | if maximum is None: |
||
| 1091 | maximum = sub_total |
||
| 1092 | elif maximum < sub_total: |
||
| 1093 | maximum = sub_total |
||
| 1094 | |||
| 1095 | current_datetime_utc = next_datetime_utc |
||
| 1096 | |||
| 1097 | if len(sample_data) > 1: |
||
| 1098 | mean = statistics.mean(sample_data) |
||
| 1099 | median = statistics.median(sample_data) |
||
| 1100 | stdev = statistics.stdev(sample_data) |
||
| 1101 | variance = statistics.variance(sample_data) |
||
| 1102 | |||
| 1103 | return result_rows_yearly, mean, median, minimum, maximum, stdev, variance |
||
| 1104 | |||
| 1105 | else: |
||
| 1106 | return list(), None, None, None, None, None, None |
||
| 1107 | |||
| 1108 | |||
| 1109 | def get_translation(language): |
||
| 1110 | if language is None or not isinstance(language, str) or len(language) == 0: |
||
| 1111 | return gettext.translation('myems', './i18n/', languages=['en']) |
||
| 1112 | |||
| 1113 | if language not in ['zh_CN', 'en', 'de', 'fr', 'es', 'ru', 'ar', 'vi', 'th', 'tr', 'ms', 'id', 'zh_TW', 'pt']: |
||
| 1114 | return gettext.translation('myems', './i18n/', languages=['en']) |
||
| 1115 | else: |
||
| 1116 | language_list = [language] |
||
| 1117 | return gettext.translation('myems', './i18n/', languages=language_list) |
||
| 1118 | |||
| 1119 | |||
| 1120 | def int16_to_hhmm(actual_value): |
||
| 1121 | """Convert int16 to time in HH:mm""" |
||
| 1122 | hh = int(actual_value / 256) |
||
| 1123 | if hh < 10: |
||
| 1124 | hh = '0' + str(hh) |
||
| 1125 | elif hh < 24: |
||
| 1126 | hh = str(hh) |
||
| 1127 | else: |
||
| 1128 | return None |
||
| 1129 | mm = actual_value % 256 |
||
| 1130 | if mm < 10: |
||
| 1131 | mm = '0' + str(mm) |
||
| 1132 | elif mm < 60: |
||
| 1133 | mm = str(mm) |
||
| 1134 | else: |
||
| 1135 | return None |
||
| 1136 | return hh + ':' + mm |
||
| 1137 | |||
| 1138 | |||
| 1139 | def round2(actual_value, precision): |
||
| 1140 | if actual_value is not None: |
||
| 1141 | try: |
||
| 1142 | result = round(actual_value, precision) |
||
| 1143 | except (TypeError, NameError, SyntaxError): |
||
| 1144 | return "-" |
||
| 1145 | except Exception: |
||
| 1146 | return "-" |
||
| 1147 | return result |
||
| 1148 | else: |
||
| 1149 | return "-" |
||
| 1150 |