|
@@ 823-844 (lines=22) @@
|
| 820 |
|
stdev = None |
| 821 |
|
variance = None |
| 822 |
|
current_datetime_utc = start_datetime_utc.replace(minute=0, second=0, microsecond=0, tzinfo=None) |
| 823 |
|
while current_datetime_utc <= end_datetime_utc: |
| 824 |
|
sub_total = Decimal(0.0) |
| 825 |
|
for row in rows_hourly: |
| 826 |
|
if current_datetime_utc <= row[0] < current_datetime_utc + \ |
| 827 |
|
timedelta(minutes=config.minutes_to_count): |
| 828 |
|
sub_total += row[1] |
| 829 |
|
|
| 830 |
|
result_rows_hourly.append((current_datetime_utc, sub_total)) |
| 831 |
|
sample_data.append(sub_total) |
| 832 |
|
|
| 833 |
|
counter += 1 |
| 834 |
|
if minimum is None: |
| 835 |
|
minimum = sub_total |
| 836 |
|
elif minimum > sub_total: |
| 837 |
|
minimum = sub_total |
| 838 |
|
|
| 839 |
|
if maximum is None: |
| 840 |
|
maximum = sub_total |
| 841 |
|
elif maximum < sub_total: |
| 842 |
|
maximum = sub_total |
| 843 |
|
|
| 844 |
|
current_datetime_utc += timedelta(minutes=config.minutes_to_count) |
| 845 |
|
|
| 846 |
|
if len(sample_data) > 1: |
| 847 |
|
mean = statistics.mean(sample_data) |
|
@@ 915-934 (lines=20) @@
|
| 912 |
|
weekday = start_datetime_local.weekday() |
| 913 |
|
current_datetime_utc = \ |
| 914 |
|
start_datetime_local.replace(hour=0) - timedelta(days=weekday, hours=int(config.utc_offset[1:3])) |
| 915 |
|
while current_datetime_utc <= end_datetime_utc: |
| 916 |
|
sub_total = Decimal(0.0) |
| 917 |
|
for row in rows_hourly: |
| 918 |
|
if current_datetime_utc <= row[0] < current_datetime_utc + timedelta(days=7): |
| 919 |
|
sub_total += row[1] |
| 920 |
|
|
| 921 |
|
result_rows_weekly.append((current_datetime_utc, sub_total)) |
| 922 |
|
sample_data.append(sub_total) |
| 923 |
|
|
| 924 |
|
counter += 1 |
| 925 |
|
if minimum is None: |
| 926 |
|
minimum = sub_total |
| 927 |
|
elif minimum > sub_total: |
| 928 |
|
minimum = sub_total |
| 929 |
|
|
| 930 |
|
if maximum is None: |
| 931 |
|
maximum = sub_total |
| 932 |
|
elif maximum < sub_total: |
| 933 |
|
maximum = sub_total |
| 934 |
|
current_datetime_utc += timedelta(days=7) |
| 935 |
|
|
| 936 |
|
if len(sample_data) > 1: |
| 937 |
|
mean = statistics.mean(sample_data) |
|
@@ 869-888 (lines=20) @@
|
| 866 |
|
# calculate the start datetime in utc of the first day in local |
| 867 |
|
start_datetime_local = start_datetime_utc + timedelta(hours=int(config.utc_offset[1:3])) |
| 868 |
|
current_datetime_utc = start_datetime_local.replace(hour=0) - timedelta(hours=int(config.utc_offset[1:3])) |
| 869 |
|
while current_datetime_utc <= end_datetime_utc: |
| 870 |
|
sub_total = Decimal(0.0) |
| 871 |
|
for row in rows_hourly: |
| 872 |
|
if current_datetime_utc <= row[0] < current_datetime_utc + timedelta(days=1): |
| 873 |
|
sub_total += row[1] |
| 874 |
|
|
| 875 |
|
result_rows_daily.append((current_datetime_utc, sub_total)) |
| 876 |
|
sample_data.append(sub_total) |
| 877 |
|
|
| 878 |
|
counter += 1 |
| 879 |
|
if minimum is None: |
| 880 |
|
minimum = sub_total |
| 881 |
|
elif minimum > sub_total: |
| 882 |
|
minimum = sub_total |
| 883 |
|
|
| 884 |
|
if maximum is None: |
| 885 |
|
maximum = sub_total |
| 886 |
|
elif maximum < sub_total: |
| 887 |
|
maximum = sub_total |
| 888 |
|
current_datetime_utc += timedelta(days=1) |
| 889 |
|
|
| 890 |
|
if len(sample_data) > 1: |
| 891 |
|
mean = statistics.mean(sample_data) |