1
|
|
|
# Licensed under a 3-clause BSD style license - see LICENSE |
2
|
|
|
"""Methods for correlation of light curves.""" |
3
|
|
|
|
4
|
|
|
import logging |
5
|
|
|
|
6
|
|
|
import numpy as np |
|
|
|
|
7
|
|
|
|
8
|
|
|
from numba import jit, float64, vectorize, guvectorize |
|
|
|
|
9
|
|
|
|
10
|
|
|
from mutis.lib.utils import get_grid |
11
|
|
|
|
12
|
|
|
__all__ = [ |
13
|
|
|
"kroedel_old", |
14
|
|
|
"welsh_old", |
15
|
|
|
"kroedel", |
16
|
|
|
"welsh", |
17
|
|
|
"nindcf", |
18
|
|
|
"gen_times_rawab", |
19
|
|
|
"gen_times_uniform", |
20
|
|
|
"gen_times_canopy", |
21
|
|
|
] |
22
|
|
|
|
23
|
|
|
log = logging.getLogger(__name__) |
24
|
|
|
|
25
|
|
|
|
26
|
|
|
def _kroedel_old(t1, d1, t2, d2, t, dt): |
|
|
|
|
27
|
|
|
t1m, t2m = get_grid(t1, t2) |
28
|
|
|
d1m, d2m = np.meshgrid(d1, d2) |
29
|
|
|
|
30
|
|
|
mask = ((t - dt / 2) < (t2m - t1m)) & ((t2m - t1m) < (t + dt / 2)) |
31
|
|
|
|
32
|
|
|
udcf = (d1m - np.mean(d1)) * (d2m - np.mean(d2)) / np.std(d1) / np.std(d2) |
33
|
|
|
|
34
|
|
|
return np.mean(udcf[mask]) |
35
|
|
|
|
36
|
|
|
|
37
|
|
View Code Duplication |
def kroedel_old(t1, d1, t2, d2, t, dt): |
|
|
|
|
38
|
|
|
"""Krolik & Edelson (1988) correlation with adaptative binning. |
39
|
|
|
Old version, not using numba. Kept for debugging purposes. |
40
|
|
|
""" |
41
|
|
|
|
42
|
|
|
if t.size != dt.size: |
43
|
|
|
log.error("Error, t and dt not the same size") |
44
|
|
|
return False |
45
|
|
|
if t1.size != d1.size: |
46
|
|
|
log.error("Error, t1 and d1 not the same size") |
47
|
|
|
return False |
48
|
|
|
if t2.size != d2.size: |
49
|
|
|
log.error("Error, t2 and d2 not the same size") |
50
|
|
|
return False |
51
|
|
|
|
52
|
|
|
res = np.empty(t.size) |
53
|
|
|
for i in range(t.size): |
54
|
|
|
res[i] = _kroedel_old(t1, d1, t2, d2, t[i], dt[i]) |
55
|
|
|
return res |
56
|
|
|
|
57
|
|
|
def _welsh_old(t1, d1, t2, d2, t, dt): |
|
|
|
|
58
|
|
|
t1m, t2m = get_grid(t1, t2) |
59
|
|
|
d1m, d2m = np.meshgrid(d1, d2) |
60
|
|
|
|
61
|
|
|
msk = ((t - dt / 2) < (t2m - t1m)) & ((t2m - t1m) < (t + dt / 2)) |
62
|
|
|
|
63
|
|
|
udcf = ( |
64
|
|
|
(d1m - np.mean(d1m[msk])) * (d2m - np.mean(d2m[msk])) / np.std(d1m[msk]) / np.std(d2m[msk]) |
65
|
|
|
) |
66
|
|
|
|
67
|
|
|
return np.mean(udcf[msk]) |
68
|
|
|
|
69
|
|
View Code Duplication |
def welsh_old(t1, d1, t2, d2, t, dt): |
|
|
|
|
70
|
|
|
"""Welsh (1999) correlation with adaptative binning. |
71
|
|
|
Old version, not using numba. Kept for debugging purposes. |
72
|
|
|
""" |
73
|
|
|
|
74
|
|
|
if t.size != dt.size: |
75
|
|
|
log.error("Error, t and dt not the same size") |
76
|
|
|
return False |
77
|
|
|
if t1.size != d1.size: |
78
|
|
|
log.error("Error, t1 and d1 not the same size") |
79
|
|
|
return False |
80
|
|
|
if t2.size != d2.size: |
81
|
|
|
log.error("Error, t2 and d2 not the same size") |
82
|
|
|
return False |
83
|
|
|
|
84
|
|
|
# res = np.array([]) |
85
|
|
|
res = np.empty(t.size) |
86
|
|
|
for i in range(t.size): |
87
|
|
|
res[i] = _welsh_old(t1, d1, t2, d2, t[i], dt[i]) |
88
|
|
|
return res |
89
|
|
|
|
90
|
|
|
@guvectorize([(float64[:], float64[:], float64[:], float64[:], float64[:], float64[:], float64[:])], '(n),(n),(m),(m),(c),(c)->(c)') |
|
|
|
|
91
|
|
|
def _kroedel_numba(t1, d1, t2, d2, t, dt, res): # pragma: no cover |
|
|
|
|
92
|
|
|
"""Helper function for kroedel()""" |
93
|
|
|
|
|
|
|
|
94
|
|
|
d1_mean = np.mean(d1) |
95
|
|
|
d2_mean = np.mean(d2) |
96
|
|
|
|
|
|
|
|
97
|
|
|
d1_std = np.std(d1) |
98
|
|
|
d2_std = np.std(d2) |
99
|
|
|
|
|
|
|
|
100
|
|
|
for k in range(len(t)): |
|
|
|
|
101
|
|
|
N = 0 |
|
|
|
|
102
|
|
|
|
|
|
|
|
103
|
|
|
numerator = 0 |
104
|
|
|
|
|
|
|
|
105
|
|
|
for i in range(len(t1)): |
|
|
|
|
106
|
|
|
for j in range(len(t2)): |
|
|
|
|
107
|
|
|
if ((t[k] - dt[k] / 2) < (t2[j] - t1[i])) & ((t2[j] - t1[i]) < (t[k] + dt[k] / 2)): |
108
|
|
|
numerator = numerator + (d1[i]-d1_mean)*(d2[j]-d2_mean) |
109
|
|
|
N = N + 1 |
|
|
|
|
110
|
|
|
|
111
|
|
|
res[k] = numerator / N / d1_std / d2_std |
112
|
|
|
|
113
|
|
|
def kroedel(t1, d1, t2, d2, t, dt): |
|
|
|
|
114
|
|
|
"""Krolik & Edelson (1988) correlation with adaptative binning. |
115
|
|
|
|
116
|
|
|
This function implements the correlation function proposed by |
117
|
|
|
Krolik & Edelson (1988), which allows for the computation of |
118
|
|
|
the correlation for -discrete- signals non-uniformly sampled |
119
|
|
|
in time. |
120
|
|
|
|
121
|
|
|
Parameters |
122
|
|
|
---------- |
123
|
|
|
t1 : :class:`~numpy.ndarray` |
124
|
|
|
Times corresponding to the first signal. |
125
|
|
|
d1 : :class:`~numpy.ndarray` |
126
|
|
|
Values of the first signal. |
127
|
|
|
t2 : :class:`~numpy.ndarray` |
128
|
|
|
Times corresponding to the second signal. |
129
|
|
|
d2 : :class:`~numpy.ndarray` |
130
|
|
|
Values of the second signal. |
131
|
|
|
t : :class:`~numpy.ndarray` |
132
|
|
|
Times on which to compute the correlation (binning). |
133
|
|
|
dt : :class:`~numpy.ndarray` |
134
|
|
|
Size of the bins on which to compute the correlation. |
135
|
|
|
|
136
|
|
|
Returns |
137
|
|
|
------- |
138
|
|
|
res : :class:`~numpy.ndarray` (size `len(t)`) |
139
|
|
|
Values of the correlation at the times `t`. |
140
|
|
|
|
141
|
|
|
Examples |
142
|
|
|
-------- |
143
|
|
|
An example of raw usage would be: |
144
|
|
|
|
145
|
|
|
>>> import numpy as np |
146
|
|
|
>>> from mutis.lib.correlation import kroedel_ab |
147
|
|
|
>>> t1 = np.linspace(1, 10, 100); s1 = np.sin(t1) |
148
|
|
|
>>> t2 = np.linspace(1, 10, 100); s2 = np.cos(t2) |
149
|
|
|
>>> t = np.linspace(1, 10, 100); dt = np.full(t.shape, 0.1) |
150
|
|
|
>>> kroedel(t1, d1, t2, d2, t, dt) |
151
|
|
|
|
152
|
|
|
However, it is recommended to be used as expalined in the |
153
|
|
|
standard MUTIS' workflow notebook. |
154
|
|
|
""" |
155
|
|
|
|
156
|
|
|
if t.size != dt.size: |
157
|
|
|
log.error("Error, t and dt not the same size") |
158
|
|
|
return False |
159
|
|
|
if t1.size != d1.size: |
160
|
|
|
log.error("Error, t1 and d1 not the same size") |
161
|
|
|
return False |
162
|
|
|
if t2.size != d2.size: |
163
|
|
|
log.error("Error, t2 and d2 not the same size") |
164
|
|
|
return False |
165
|
|
|
|
166
|
|
|
return _kroedel_numba(t1, d1, t2, d2, t, dt) |
|
|
|
|
167
|
|
|
|
168
|
|
|
@guvectorize([(float64[:], float64[:], float64[:], float64[:], float64[:], float64[:], float64[:])], '(n),(n),(m),(m),(c),(c)->(c)') |
|
|
|
|
169
|
|
|
def _welsh_numba(t1, d1, t2, d2, t, dt, res): # pragma: no cover |
|
|
|
|
170
|
|
|
"""Helper function for welsh()""" |
171
|
|
|
|
172
|
|
|
for k in range(len(t)): |
|
|
|
|
173
|
|
|
N=0 |
|
|
|
|
174
|
|
|
|
|
|
|
|
175
|
|
|
d1_M_sum = 0 |
|
|
|
|
176
|
|
|
d1_M_sq_sum = 0 |
|
|
|
|
177
|
|
|
|
|
|
|
|
178
|
|
|
d2_M_sum = 0 |
|
|
|
|
179
|
|
|
d2_M_sq_sum = 0 |
|
|
|
|
180
|
|
|
|
|
|
|
|
181
|
|
|
d1_d2_M_sum = 0 |
|
|
|
|
182
|
|
|
|
|
|
|
|
183
|
|
|
for i in range(len(t1)): |
|
|
|
|
184
|
|
|
for j in range(len(t2)): |
|
|
|
|
185
|
|
|
if ((t[k] - dt[k] / 2) < (t2[j] - t1[i])) & ((t2[j] - t1[i]) < (t[k] + dt[k] / 2)): |
186
|
|
|
d1_M_sum = d1_M_sum + d1[i] |
|
|
|
|
187
|
|
|
d2_M_sum = d2_M_sum + d2[j] |
|
|
|
|
188
|
|
|
|
|
|
|
|
189
|
|
|
d1_M_sq_sum = d1_M_sq_sum + d1[i]**2 |
|
|
|
|
190
|
|
|
d2_M_sq_sum = d2_M_sq_sum + d2[j]**2 |
|
|
|
|
191
|
|
|
|
|
|
|
|
192
|
|
|
d1_d2_M_sum = d1_d2_M_sum + d1[i]*d2[j] |
|
|
|
|
193
|
|
|
|
|
|
|
|
194
|
|
|
N = N + 1 |
|
|
|
|
195
|
|
|
|
|
|
|
|
196
|
|
|
d1_M_mean = d1_M_sum/N |
|
|
|
|
197
|
|
|
d2_M_mean = d2_M_sum/N |
|
|
|
|
198
|
|
|
|
|
|
|
|
199
|
|
|
d1_M_std = (d1_M_sq_sum / N - d1_M_mean**2)**0.5 |
|
|
|
|
200
|
|
|
d2_M_std = (d2_M_sq_sum / N - d2_M_mean**2)**0.5 |
|
|
|
|
201
|
|
|
|
202
|
|
|
res[k] = (d1_d2_M_sum/N - d1_M_mean*d2_M_mean) / d1_M_std / d2_M_std |
203
|
|
|
|
|
|
|
|
204
|
|
|
def welsh(t1, d1, t2, d2, t, dt): |
|
|
|
|
205
|
|
|
"""Welsh (1999) correlation with adaptative binning. |
206
|
|
|
|
207
|
|
|
This function implements the correlation function proposed |
208
|
|
|
by Welsh (1999), which allows for the computation of the correlation |
209
|
|
|
for -discrete- signals non-uniformly sampled in time. |
210
|
|
|
|
211
|
|
|
Parameters |
212
|
|
|
---------- |
213
|
|
|
t1 : :class:`~numpy.ndarray` |
214
|
|
|
Times corresponding to the first signal. |
215
|
|
|
d1 : :class:`~numpy.ndarray` |
216
|
|
|
Values of the first signal. |
217
|
|
|
t2 : :class:`~numpy.ndarray` |
218
|
|
|
Times corresponding to the second signal. |
219
|
|
|
d2 : :class:`~numpy.ndarray` |
220
|
|
|
Values of the second signal. |
221
|
|
|
t : :class:`~numpy.ndarray` |
222
|
|
|
Times on which to compute the correlation (binning). |
223
|
|
|
dt : :class:`~numpy.ndarray` |
224
|
|
|
Size of the bins on which to compute the correlation. |
225
|
|
|
|
226
|
|
|
Returns |
227
|
|
|
------- |
228
|
|
|
res : :class:`~numpy.ndarray` (size `len(t)`) |
229
|
|
|
Values of the correlation at the times `t`. |
230
|
|
|
|
231
|
|
|
Examples |
232
|
|
|
-------- |
233
|
|
|
An example of raw usage would be: |
234
|
|
|
|
235
|
|
|
>>> import numpy as np |
236
|
|
|
>>> from mutis.lib.correlation import welsh_ab |
237
|
|
|
>>> t1 = np.linspace(1, 10, 100); s1 = np.sin(t1) |
238
|
|
|
>>> t2 = np.linspace(1, 10, 100); s2 = np.cos(t2) |
239
|
|
|
>>> t = np.linspace(1, 10, 100); dt = np.full(t.shape, 0.1) |
240
|
|
|
>>> welsh(t1, d1, t2, d2, t, dt) |
241
|
|
|
|
242
|
|
|
However, it is recommended to be used as expalined in the |
243
|
|
|
standard MUTIS' workflow notebook. |
244
|
|
|
""" |
245
|
|
|
|
|
|
|
|
246
|
|
|
if t.size != dt.size: |
247
|
|
|
log.error("Error, t and dt not the same size") |
248
|
|
|
return False |
249
|
|
|
if t1.size != d1.size: |
250
|
|
|
log.error("Error, t1 and d1 not the same size") |
251
|
|
|
return False |
252
|
|
|
if t2.size != d2.size: |
253
|
|
|
log.error("Error, t2 and d2 not the same size") |
254
|
|
|
return False |
255
|
|
|
|
|
|
|
|
256
|
|
|
return _welsh_numba(t1, d1, t2, d2, t, dt) |
|
|
|
|
257
|
|
|
|
258
|
|
|
def ndcf(x, y): |
|
|
|
|
259
|
|
|
"""Computes the normalised correlation of two discrete signals (ignoring times).""" |
260
|
|
|
|
261
|
|
|
x = (x - np.mean(x)) / np.std(x) / len(x) |
262
|
|
|
y = (y - np.mean(y)) / np.std(y) |
263
|
|
|
return np.correlate(y, x, "full") |
264
|
|
|
|
265
|
|
|
|
266
|
|
|
def nindcf(t1, s1, t2, s2): |
|
|
|
|
267
|
|
|
"""Computes the normalised correlation of two discrete signals (interpolating them).""" |
268
|
|
|
|
269
|
|
|
dt = np.max([(t1.max() - t1.min()) / t1.size, (t2.max() - t2.min()) / t2.size]) |
|
|
|
|
270
|
|
|
n1 = int(np.ptp(t1) / dt * 10.0) |
|
|
|
|
271
|
|
|
n2 = int(np.ptp(t1) / dt * 10.0) |
|
|
|
|
272
|
|
|
s1i = np.interp(np.linspace(t1.min(), t1.max(), n1), t1, s1) |
273
|
|
|
s2i = np.interp(np.linspace(t2.min(), t2.max(), n2), t2, s2) |
274
|
|
|
return ndcf(s1i, s2i) |
275
|
|
|
|
276
|
|
|
|
277
|
|
|
def gen_times_rawab(t1, t2, dt0=None, ndtmax=1.0, nbinsmin=121, force=None): |
|
|
|
|
278
|
|
|
"""LEGACY. Returns t, dt for use with adaptative binning methods. |
279
|
|
|
|
280
|
|
|
Uses a shitty algorithm to find a time binning in which each bin contains |
281
|
|
|
a minimum of points (specified by `nbinsmin`, with an starting bin size |
282
|
|
|
(`dt0`) and a maximum bin size (`ndtmax*dt0`). |
283
|
|
|
|
284
|
|
|
The algorithms start at the first time bin, and enlarges the bin size |
285
|
|
|
until it has enough points or it reaches the maximum length, then creates |
286
|
|
|
another starting at that point. |
287
|
|
|
|
288
|
|
|
If `force` is True, then it discards the created bins on which there are |
289
|
|
|
not enough points. |
290
|
|
|
""" |
291
|
|
|
|
292
|
|
|
# Sensible values for these parameters must be found by hand, and depend |
293
|
|
|
# on the characteristic of input data. |
294
|
|
|
# |
295
|
|
|
# dt0: |
296
|
|
|
# minimum bin size, also used as step in a.b. |
297
|
|
|
# default: dt0 = 0.25*(tmax-tmin)/np.sqrt(t1.size*t2.size+1) |
298
|
|
|
# (more or less a statistically reasonable binning, |
299
|
|
|
# to increase precision) |
300
|
|
|
# ndtmax: |
301
|
|
|
# Maximum size of bins (in units of dt0). |
302
|
|
|
# default: 1.0 |
303
|
|
|
# nbinsmin: |
304
|
|
|
# if the data has a lot of error, higher values are needed |
305
|
|
|
# to soften the correlation beyond spurious variability. |
306
|
|
|
# default: 121 (11x11) |
307
|
|
|
|
308
|
|
|
# tmin = -(np.min([t1.max(),t2.max()]) - np.max([t1.min(),t2.min()])) |
309
|
|
|
tmax = +(np.max([t1.max(), t2.max()]) - np.min([t1.min(), t2.min()])) |
310
|
|
|
tmin = -tmax |
311
|
|
|
|
312
|
|
|
if dt0 is None: |
313
|
|
|
dt0 = 0.25 * (tmax - tmin) / np.sqrt(t1.size * t2.size + 1) |
314
|
|
|
|
315
|
|
|
t = np.array([]) |
|
|
|
|
316
|
|
|
dt = np.array([]) |
|
|
|
|
317
|
|
|
nb = np.array([]) |
|
|
|
|
318
|
|
|
t1m, t2m = np.meshgrid(t1, t2) |
319
|
|
|
|
320
|
|
|
ti = tmin |
|
|
|
|
321
|
|
|
tf = ti + dt0 |
|
|
|
|
322
|
|
|
|
323
|
|
|
while tf < tmax: |
324
|
|
|
tm = (ti + tf) / 2 |
|
|
|
|
325
|
|
|
dtm = tf - ti |
326
|
|
|
nbins = np.sum((((tm - dtm / 2) < (t2m - t1m)) & ((t2m - t1m) < (tm + dtm / 2)))) |
327
|
|
|
if dtm <= dt0 * ndtmax: |
328
|
|
|
if nbins >= nbinsmin: |
329
|
|
|
t = np.append(t, tm) |
|
|
|
|
330
|
|
|
dt = np.append(dt, dtm) |
|
|
|
|
331
|
|
|
nb = np.append(nb, nbins) |
|
|
|
|
332
|
|
|
ti, tf = tf, tf + dt0 |
|
|
|
|
333
|
|
|
else: |
334
|
|
|
tf = tf + 0.1 * dt0 # try small increments |
|
|
|
|
335
|
|
|
else: |
336
|
|
|
ti, tf = tf, tf + dt0 |
|
|
|
|
337
|
|
|
|
338
|
|
|
# force zero to appear in t ## |
339
|
|
|
if force is None: |
340
|
|
|
force = [0] |
341
|
|
|
for tm in force: |
|
|
|
|
342
|
|
|
dtm = dt0 / 2 |
343
|
|
|
nbins = np.sum((((tm - dtm / 2) < (t2m - t1m)) & ((t2m - t1m) < (tm + dtm / 2)))) |
344
|
|
|
while dtm <= dt0 * ndtmax: |
345
|
|
|
if nbins >= nbinsmin: |
|
|
|
|
346
|
|
|
t = np.append(t, tm) |
|
|
|
|
347
|
|
|
dt = np.append(dt, dtm) |
|
|
|
|
348
|
|
|
nb = np.append(nb, nbins) |
|
|
|
|
349
|
|
|
break |
350
|
|
|
else: |
351
|
|
|
dtm = dtm + dt0 |
352
|
|
|
|
353
|
|
|
idx = np.argsort(t) |
354
|
|
|
t = t[idx] |
|
|
|
|
355
|
|
|
dt = dt[idx] |
|
|
|
|
356
|
|
|
nb = nb[idx] |
|
|
|
|
357
|
|
|
|
358
|
|
|
return t, dt, nb |
359
|
|
|
|
360
|
|
|
|
361
|
|
|
def gen_times_uniform(t1, t2, dtm=None, tmin=None, tmax=None, nbinsmin=121, n=200): |
|
|
|
|
362
|
|
|
"""Returns an uniform t, dt time binning for use with adaptative binning methods. |
363
|
|
|
|
364
|
|
|
The time interval on which the correlation is defined is split in |
365
|
|
|
`n` bins. Bins with a number of point less than `nbinsmin` are discarded. |
366
|
|
|
|
367
|
|
|
Parameters |
368
|
|
|
---------- |
369
|
|
|
t1 : :py:class:`np.ndarray` |
370
|
|
|
Times of the first signal. |
371
|
|
|
t2 : :py:class:`np.ndarray` |
372
|
|
|
Times of the second signal. |
373
|
|
|
tmin : :py:class:`~float` |
374
|
|
|
Start of the time intervals (if not specified, start of the interval on which the correlation is define). |
|
|
|
|
375
|
|
|
tmax : :py:class:`~float` |
376
|
|
|
End of the time intervals (if not specified, end of the interval on which the correlation is define). |
|
|
|
|
377
|
|
|
nbinsmin : :py:class:`~float` |
378
|
|
|
Minimum of points falling on each bin. |
379
|
|
|
n : :py:class:`~float` |
380
|
|
|
Number of bins in which to split (needs not to be the number of bins returned). |
381
|
|
|
|
382
|
|
|
Returns |
383
|
|
|
------- |
384
|
|
|
t : :class:`~numpy.ndarray` |
385
|
|
|
Time binning on which to compute the correlation. |
386
|
|
|
dt : :class:`~numpy.ndarray` |
387
|
|
|
Size of the bins defined by `t` |
388
|
|
|
nb : :class:`~numpy.ndarray` |
389
|
|
|
Number of points falling on each bin defined by `t` and `dt`. |
390
|
|
|
""" |
391
|
|
|
|
392
|
|
|
if tmax is None: |
393
|
|
|
tmax = +(np.max([t1.max(), t2.max()]) - np.min([t1.min(), t2.min()])) |
394
|
|
|
if tmin is None: |
395
|
|
|
tmin = -tmax |
|
|
|
|
396
|
|
|
|
397
|
|
|
t = np.linspace(tmin, tmax, n) |
|
|
|
|
398
|
|
|
if dtm is None: |
399
|
|
|
dtm = (tmax - tmin) / n |
400
|
|
|
dt = np.full(t.shape, dtm) |
|
|
|
|
401
|
|
|
nb = np.empty(t.shape) |
|
|
|
|
402
|
|
|
t1m, t2m = np.meshgrid(t1, t2) |
403
|
|
|
|
404
|
|
|
for im, tm in enumerate(t): |
|
|
|
|
405
|
|
|
nb[im] = np.sum((((tm - dtm / 2) < (t2m - t1m)) & ((t2m - t1m) < (tm + dtm / 2)))) |
406
|
|
|
idx = nb < nbinsmin |
407
|
|
|
t = np.delete(t, idx) |
|
|
|
|
408
|
|
|
dt = np.delete(dt, idx) |
|
|
|
|
409
|
|
|
nb = np.delete(nb, idx) |
|
|
|
|
410
|
|
|
|
411
|
|
|
return t, dt, nb |
412
|
|
|
|
413
|
|
|
|
414
|
|
|
def gen_times_canopy(t1, t2, dtmin=0.01, dtmax=0.5, nbinsmin=500, nf=0.5): |
|
|
|
|
415
|
|
|
"""Returns a non-uniform t, dt time binning for use with adaptative binning methods. |
416
|
|
|
|
417
|
|
|
This cumbersome algorithm does more or less the following: |
418
|
|
|
1) Divides the time interval on which the correlation is defined in |
419
|
|
|
the maximum number of points (minimum bin size defined by `dtmin`). |
420
|
|
|
2) Checks the number of point falling on each bin. |
421
|
|
|
3) If there are several consecutive intervals with a number of points |
422
|
|
|
over `nbinsmin`, it groups them (reducing the number of points |
423
|
|
|
exponentially as defined by `nf`, if the number of intervals in the |
424
|
|
|
group is high, or one by one if it is low.) |
425
|
|
|
4) Repeat until APPROXIMATELY we have reached intervals of size `dtmax`. |
426
|
|
|
|
427
|
|
|
How the exact implementation works, I forgot! But the results are more |
428
|
|
|
or less nice... |
429
|
|
|
|
430
|
|
|
Parameters |
431
|
|
|
---------- |
432
|
|
|
t1 : :py:class:`np.ndarray` |
433
|
|
|
Times of the first signal. |
434
|
|
|
t2 : :py:class:`np.ndarray` |
435
|
|
|
Times of the second signal. |
436
|
|
|
dtmin : :py:class:`~float` |
437
|
|
|
Start of the time intervals (if not specified, start of the |
438
|
|
|
interval on which the correlation is define). |
439
|
|
|
dtmax : :py:class:`~float` |
440
|
|
|
End of the time intervals (if not specified, end of the interval |
441
|
|
|
on which the correlation is define). |
442
|
|
|
nbinsmin : :py:class:`~float` |
443
|
|
|
Minimum of points falling on each bin. |
444
|
|
|
nf : :py:class:`~float` |
445
|
|
|
How fast are the intervals divided. |
446
|
|
|
|
447
|
|
|
Returns |
448
|
|
|
------- |
449
|
|
|
t : :class:`~numpy.ndarray` |
450
|
|
|
Time binning on which to compute the correlation. |
451
|
|
|
dt : :class:`~numpy.ndarray` |
452
|
|
|
Size of the bins defined by `t` |
453
|
|
|
nb : :class:`~numpy.ndarray` |
454
|
|
|
Number of points falling on each bin defined by `t` and `dt`. |
455
|
|
|
""" |
456
|
|
|
|
457
|
|
|
t1m, t2m = np.meshgrid(t1, t2) |
458
|
|
|
|
459
|
|
|
def _comp_nb(t, dt): |
|
|
|
|
460
|
|
|
nb = np.empty(len(t)) |
|
|
|
|
461
|
|
|
for i in range(len(t)): |
|
|
|
|
462
|
|
|
nb[i] = np.sum( |
463
|
|
|
(((t[i] - dt[i] / 2) < (t2m - t1m)) & ((t2m - t1m) < (t[i] + dt[i] / 2))) |
464
|
|
|
) |
465
|
|
|
return nb |
466
|
|
|
|
467
|
|
|
tmax = +(np.max([t1.max(), t2.max()]) - np.min([t1.min(), t2.min()])) |
468
|
|
|
tmin = -tmax |
469
|
|
|
|
470
|
|
|
t = np.linspace(tmin, tmax, int((tmax - tmin) / dtmin)) |
|
|
|
|
471
|
|
|
dt = np.full(t.size, np.ptp(t) / t.size) |
|
|
|
|
472
|
|
|
nb = _comp_nb(t, dt) |
|
|
|
|
473
|
|
|
|
474
|
|
|
k = 0 |
475
|
|
|
while k < int(np.log(dtmax / dtmin) / np.log(1 / nf)): |
476
|
|
|
k = k + 1 |
477
|
|
|
|
478
|
|
|
idx = nb < nbinsmin |
479
|
|
|
|
480
|
|
|
ts, dts, nbs = t, dt, nb |
|
|
|
|
481
|
|
|
|
482
|
|
|
t, dt = np.copy(ts), np.copy(dts) |
|
|
|
|
483
|
|
|
|
484
|
|
|
n_grp = 0 |
485
|
|
|
grps = ( |
486
|
|
|
np.where(np.diff(np.concatenate(([False], idx, [False]), dtype=int)) != 0)[0] |
|
|
|
|
487
|
|
|
).reshape(-1, 2) |
488
|
|
|
for i_grp, grp in enumerate(grps): |
|
|
|
|
489
|
|
|
if grp[0] > 0: |
490
|
|
|
ar = grp[0] |
|
|
|
|
491
|
|
|
a = t[grp[0] - 1] |
|
|
|
|
492
|
|
|
else: |
493
|
|
|
ar = grp[0] |
|
|
|
|
494
|
|
|
a = t[grp[0]] |
|
|
|
|
495
|
|
|
|
496
|
|
|
if grp[1] < t.size - 1: |
497
|
|
|
br = grp[1] - 1 |
|
|
|
|
498
|
|
|
b = t[grp[1]] |
|
|
|
|
499
|
|
|
else: |
500
|
|
|
br = grp[1] - 1 |
|
|
|
|
501
|
|
|
b = t[grp[1] - 1] |
|
|
|
|
502
|
|
|
|
503
|
|
|
if (br - ar) < 8: |
504
|
|
|
if br - ar >= 1: |
505
|
|
|
n = br - ar + 1 |
|
|
|
|
506
|
|
|
else: |
507
|
|
|
n = br - ar + 2 |
|
|
|
|
508
|
|
|
|
509
|
|
|
tins = np.linspace(a, b, n, endpoint=False)[1:] |
510
|
|
|
|
511
|
|
|
ts = np.delete(ts, np.arange(ar, br + 1) - n_grp) |
|
|
|
|
512
|
|
|
dts = np.delete(dts, np.arange(ar, br + 1) - n_grp) |
513
|
|
|
|
514
|
|
|
ts = np.insert(ts, grp[0] - n_grp, tins) |
|
|
|
|
515
|
|
|
dts = np.insert(dts, grp[0] - n_grp, np.full(n - 1, (b - a) / (n - 1))) |
516
|
|
|
|
517
|
|
|
if br - ar >= 1: |
518
|
|
|
n_grp = n_grp + 1 |
519
|
|
|
else: |
520
|
|
|
pass |
521
|
|
|
else: |
522
|
|
|
n = int(nf * (br - ar + 1)) |
|
|
|
|
523
|
|
|
|
524
|
|
|
tins = np.linspace(a, b, n, endpoint=False)[1:] |
525
|
|
|
|
526
|
|
|
ts = np.delete(ts, np.arange(ar, br + 1) - n_grp) |
|
|
|
|
527
|
|
|
dts = np.delete(dts, np.arange(ar, br + 1) - n_grp) |
528
|
|
|
|
529
|
|
|
ts = np.insert(ts, grp[0] - n_grp, tins) |
|
|
|
|
530
|
|
|
dts = np.insert(dts, grp[0] - n_grp, np.full(n - 1, (b - a) / (n - 1))) |
531
|
|
|
|
532
|
|
|
if br - ar >= 1: |
533
|
|
|
n_grp = n_grp + (grp[1] - grp[0] - n) + 1 |
534
|
|
|
else: |
535
|
|
|
pass |
536
|
|
|
|
537
|
|
|
t = ts |
|
|
|
|
538
|
|
|
dt = dts |
|
|
|
|
539
|
|
|
nb = _comp_nb(t, dt) |
|
|
|
|
540
|
|
|
|
541
|
|
|
idx = nb < nbinsmin |
542
|
|
|
|
543
|
|
|
t = np.delete(t, idx) |
|
|
|
|
544
|
|
|
dt = np.delete(dt, idx) |
|
|
|
|
545
|
|
|
nb = np.delete(nb, idx) |
|
|
|
|
546
|
|
|
|
547
|
|
|
return t, dt, nb |
548
|
|
|
|