|
@@ 69-88 (lines=20) @@
|
| 66 |
|
|
| 67 |
|
return np.mean(udcf[msk]) |
| 68 |
|
|
| 69 |
|
def welsh_old(t1, d1, t2, d2, t, dt): |
| 70 |
|
"""Welsh (1999) correlation with adaptative binning. |
| 71 |
|
Old version, not using numba. Kept for debugging purposes. |
| 72 |
|
""" |
| 73 |
|
|
| 74 |
|
if t.size != dt.size: |
| 75 |
|
log.error("Error, t and dt not the same size") |
| 76 |
|
return False |
| 77 |
|
if t1.size != d1.size: |
| 78 |
|
log.error("Error, t1 and d1 not the same size") |
| 79 |
|
return False |
| 80 |
|
if t2.size != d2.size: |
| 81 |
|
log.error("Error, t2 and d2 not the same size") |
| 82 |
|
return False |
| 83 |
|
|
| 84 |
|
# res = np.array([]) |
| 85 |
|
res = np.empty(t.size) |
| 86 |
|
for i in range(t.size): |
| 87 |
|
res[i] = _welsh_old(t1, d1, t2, d2, t[i], dt[i]) |
| 88 |
|
return res |
| 89 |
|
|
| 90 |
|
@guvectorize([(float64[:], float64[:], float64[:], float64[:], float64[:], float64[:], float64[:])], '(n),(n),(m),(m),(c),(c)->(c)') |
| 91 |
|
def _kroedel_numba(t1, d1, t2, d2, t, dt, res): # pragma: no cover |
|
@@ 37-55 (lines=19) @@
|
| 34 |
|
return np.mean(udcf[mask]) |
| 35 |
|
|
| 36 |
|
|
| 37 |
|
def kroedel_old(t1, d1, t2, d2, t, dt): |
| 38 |
|
"""Krolik & Edelson (1988) correlation with adaptative binning. |
| 39 |
|
Old version, not using numba. Kept for debugging purposes. |
| 40 |
|
""" |
| 41 |
|
|
| 42 |
|
if t.size != dt.size: |
| 43 |
|
log.error("Error, t and dt not the same size") |
| 44 |
|
return False |
| 45 |
|
if t1.size != d1.size: |
| 46 |
|
log.error("Error, t1 and d1 not the same size") |
| 47 |
|
return False |
| 48 |
|
if t2.size != d2.size: |
| 49 |
|
log.error("Error, t2 and d2 not the same size") |
| 50 |
|
return False |
| 51 |
|
|
| 52 |
|
res = np.empty(t.size) |
| 53 |
|
for i in range(t.size): |
| 54 |
|
res[i] = _kroedel_old(t1, d1, t2, d2, t[i], dt[i]) |
| 55 |
|
return res |
| 56 |
|
|
| 57 |
|
def _welsh_old(t1, d1, t2, d2, t, dt): |
| 58 |
|
t1m, t2m = get_grid(t1, t2) |