1
|
|
|
#!/usr/bin/python2.7 |
2
|
|
|
""" |
3
|
|
|
Copyright (C) 2014 Reinventing Geospatial, Inc. |
4
|
|
|
|
5
|
|
|
This program is free software: you can redistribute it and/or modify |
6
|
|
|
it under the terms of the GNU General Public License as published by |
7
|
|
|
the Free Software Foundation, either version 3 of the License, or |
8
|
|
|
(at your option) any later version. |
9
|
|
|
|
10
|
|
|
This program is distributed in the hope that it will be useful, |
11
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
12
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13
|
|
|
GNU General Public License for more details. |
14
|
|
|
|
15
|
|
|
You should have received a copy of the GNU General Public License |
16
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>, |
17
|
|
|
or write to the Free Software Foundation, Inc., 59 Temple Place - |
18
|
|
|
Suite 330, Boston, MA 02111-1307, USA. |
19
|
|
|
|
20
|
|
|
Author: Steven D. Lander, Reinventing Geospatial Inc (RGi) |
21
|
|
|
Date: 2013-07-12 |
22
|
|
|
Requires: sqlite3, argparse |
23
|
|
|
Optional: Python Imaging Library (PIL or Pillow) |
24
|
|
|
Description: Converts a TMS folder into a geopackage with |
25
|
|
|
PNGs for images with transparency and JPEGs for those |
26
|
|
|
without. |
27
|
|
|
Credits: |
28
|
|
|
MapProxy imaging functions: http://mapproxy.org |
29
|
|
|
gdal2mb on github: https://github.com/developmentseed/gdal2mb |
30
|
|
|
|
31
|
|
|
Version: |
32
|
|
|
""" |
33
|
|
|
|
34
|
|
|
from glob import glob |
35
|
|
|
try: |
36
|
|
|
from cStringIO import StringIO as ioBuffer |
37
|
|
|
except ImportError: |
38
|
|
|
from io import BytesIO as ioBuffer |
39
|
|
|
from time import sleep |
40
|
|
|
from uuid import uuid4 |
41
|
|
|
from sys import stdout |
42
|
|
|
from sys import version_info |
43
|
|
|
if version_info[0] == 3: |
44
|
|
|
xrange = range |
45
|
|
|
from operator import attrgetter |
46
|
|
|
from sqlite3 import connect, Error |
47
|
|
|
from argparse import ArgumentParser |
48
|
|
|
from sqlite3 import Binary as sbinary |
49
|
|
|
from os import walk, remove |
50
|
|
|
from os.path import split, join, exists |
51
|
|
|
from multiprocessing import cpu_count, Pool |
52
|
|
|
from math import pi, sin, log, tan, atan, sinh, degrees |
53
|
|
|
try: |
54
|
|
|
from PIL.Image import open as IOPEN |
55
|
|
|
except ImportError: |
56
|
|
|
IOPEN = None |
57
|
|
|
|
58
|
|
|
# JPEGs @ 75% provide good quality images with low footprint, use as a default |
59
|
|
|
# PNGs should be used sparingly (mixed mode) due to their high disk usage RGBA |
60
|
|
|
# Options are mixed, jpeg, and png |
61
|
|
|
IMAGE_TYPES = '.png', '.jpeg', '.jpg' |
62
|
|
|
|
63
|
|
|
|
64
|
|
|
class Mercator(object): |
65
|
|
|
""" |
66
|
|
|
Mercator projection class that holds specific calculations and formulas |
67
|
|
|
for EPSG3857. |
68
|
|
|
""" |
69
|
|
|
|
70
|
|
|
def __init__(self, tile_size=256): |
71
|
|
|
""" |
72
|
|
|
Constructor |
73
|
|
|
""" |
74
|
|
|
self.tile_size = tile_size |
75
|
|
|
self.radius = 6378137 |
76
|
|
|
self.origin_shift = pi * self.radius |
77
|
|
|
self.initial_resolution = 2 * self.origin_shift / self.tile_size |
78
|
|
|
|
79
|
|
|
@staticmethod |
80
|
|
|
def invert_y(z, y): |
81
|
|
|
""" |
82
|
|
|
Inverts the Y tile value. |
83
|
|
|
|
84
|
|
|
Inputs: |
85
|
|
|
z -- the zoom level associated with the tile |
86
|
|
|
y -- the Y tile number |
87
|
|
|
|
88
|
|
|
Returns: |
89
|
|
|
The flipped tile value |
90
|
|
|
""" |
91
|
|
|
return (1 << z) - y - 1 |
92
|
|
|
|
93
|
|
|
@staticmethod |
94
|
|
|
def tile_to_lat_lon(z, x, y): |
95
|
|
|
""" |
96
|
|
|
Returns the lat/lon coordinates of the bottom-left corner of the input |
97
|
|
|
tile. |
98
|
|
|
|
99
|
|
|
Inputs: |
100
|
|
|
z -- zoom level value for input tile |
101
|
|
|
x -- tile column (longitude) value for input tile |
102
|
|
|
y -- tile row (latitude) value for input tile |
103
|
|
|
""" |
104
|
|
|
n = 2.0**z |
105
|
|
|
lon = x / n * 360.0 - 180.0 |
106
|
|
|
lat_rad = atan(sinh(pi * (2 * y / n - 1))) |
107
|
|
|
#lat_rad = math.atan(math.sinh(math.pi * (1 - 2 * y / n))) |
108
|
|
|
lat = degrees(lat_rad) |
109
|
|
|
return lat, lon |
110
|
|
|
|
111
|
|
|
def tile_to_meters(self, z, x, y): |
112
|
|
|
""" |
113
|
|
|
Returns the meter coordinates of the bottom-left corner of the input |
114
|
|
|
tile. |
115
|
|
|
|
116
|
|
|
Inputs: |
117
|
|
|
z -- zoom level value for input tile |
118
|
|
|
x -- tile column (longitude) value for input tile |
119
|
|
|
y -- tile row (latitude) value for input tile |
120
|
|
|
""" |
121
|
|
|
# Mercator Upper left, add 1 to both x and y to get Lower right |
122
|
|
|
lat, lon = self.tile_to_lat_lon(z, x, y) |
123
|
|
|
meters_x = lon * self.origin_shift / 180.0 |
124
|
|
|
meters_y = log(tan((90 + lat) * pi / 360.0)) / \ |
125
|
|
|
(pi / 180.0) |
126
|
|
|
meters_y = meters_y * self.origin_shift / 180.0 |
127
|
|
|
return meters_x, meters_y |
128
|
|
|
|
129
|
|
|
@staticmethod |
130
|
|
|
def pixel_size(z): |
131
|
|
|
""" |
132
|
|
|
Returns the pixel resolution of the input zoom level. |
133
|
|
|
|
134
|
|
|
Inputs: |
135
|
|
|
z -- zoom level value for the input tile |
136
|
|
|
""" |
137
|
|
|
return 156543.033928041 / 2**z |
138
|
|
|
|
139
|
|
|
def get_coord(self, z, x, y): |
140
|
|
|
""" |
141
|
|
|
Returns the coordinates (in meters) of the bottom-left corner of the |
142
|
|
|
input tile. |
143
|
|
|
|
144
|
|
|
Inputs: |
145
|
|
|
z -- zoom level value for input tile |
146
|
|
|
x -- tile column (longitude) value for input tile |
147
|
|
|
y -- tile row (latitude) value for input tile |
148
|
|
|
""" |
149
|
|
|
return self.tile_to_meters(z, x, y) |
150
|
|
|
|
151
|
|
|
@staticmethod |
152
|
|
|
def truncate(coord): |
153
|
|
|
""" |
154
|
|
|
Formats a coordinate to within an acceptable degree of accuracy (2 |
155
|
|
|
decimal places for mercator). |
156
|
|
|
""" |
157
|
|
|
return '%.2f' % (int(coord * 100) / float(100)) |
158
|
|
|
|
159
|
|
|
|
160
|
|
|
class Geodetic(object): |
161
|
|
|
""" |
162
|
|
|
Geodetic projection class that holds specific calculations and formulas for |
163
|
|
|
EPSG4326. |
164
|
|
|
""" |
165
|
|
|
|
166
|
|
|
def __init__(self, tile_size=256): |
167
|
|
|
""" |
168
|
|
|
Constructor |
169
|
|
|
""" |
170
|
|
|
self.tile_size = tile_size |
171
|
|
|
self.resolution_factor = 360.0 / self.tile_size |
172
|
|
|
|
173
|
|
|
def pixel_size(self, zoom): |
174
|
|
|
""" |
175
|
|
|
Return the size of a pixel in lat/long at the given zoom level |
176
|
|
|
|
177
|
|
|
z -- zoom level of the tile |
178
|
|
|
""" |
179
|
|
|
return self.resolution_factor / 2**zoom |
180
|
|
|
|
181
|
|
|
def get_coord(self, z, x, y): |
182
|
|
|
""" |
183
|
|
|
Return the coordinates (in lat/long) of the bottom left corner of |
184
|
|
|
the tile |
185
|
|
|
|
186
|
|
|
z -- zoom level for input tile |
187
|
|
|
x -- tile column |
188
|
|
|
y -- tile row |
189
|
|
|
""" |
190
|
|
|
res = self.resolution_factor / 2**z |
191
|
|
|
return x * self.tile_size * res - 180, y * self.tile_size * res - 90 |
192
|
|
|
|
193
|
|
|
@staticmethod |
194
|
|
|
def invert_y(z, y): |
195
|
|
|
""" |
196
|
|
|
Return the inverted Y value of the tile |
197
|
|
|
|
198
|
|
|
z -- zoom level |
199
|
|
|
""" |
200
|
|
|
if z == 0: |
201
|
|
|
return 0 |
202
|
|
|
else: |
203
|
|
|
return (1 << (z - 1)) - y - 1 |
204
|
|
|
|
205
|
|
|
@staticmethod |
206
|
|
|
def truncate(coord): |
207
|
|
|
""" |
208
|
|
|
Formats a coordinate to an acceptable degree of accuracy (7 decimal |
209
|
|
|
places for Geodetic). |
210
|
|
|
""" |
211
|
|
|
return '%.7f' % (int(coord * 10000000) / float(10000000)) |
212
|
|
|
|
213
|
|
|
|
214
|
|
View Code Duplication |
class EllipsoidalMercator(Mercator): |
|
|
|
|
215
|
|
|
""" |
216
|
|
|
Ellipsoidal Mercator projection class that holds specific calculations and |
217
|
|
|
formulas for EPSG3395. |
218
|
|
|
""" |
219
|
|
|
|
220
|
|
|
def __init__(self): |
221
|
|
|
""" |
222
|
|
|
Constructor |
223
|
|
|
""" |
224
|
|
|
super(EllipsoidalMercator, self).__init__() |
225
|
|
|
|
226
|
|
|
@staticmethod |
227
|
|
|
def lat_to_northing(lat): |
228
|
|
|
""" |
229
|
|
|
Convert a latitude to a northing |
230
|
|
|
/ / pi phi \ / 1 - e sin(phi) \ e/2 \ |
231
|
|
|
y(phi) = R ln| tan| --- + --- | | -------------- | | |
232
|
|
|
\ \ 4 2 / \ 1 + e sin(phi) / / |
233
|
|
|
""" |
234
|
|
|
r = 6378137.0 |
235
|
|
|
e = 0.081819190842621 |
236
|
|
|
return r * log(tan((pi / 2 + lat) / 2) * ((1 - e * sin(lat)) / |
237
|
|
|
(1 + e * sin(lat)))**(e / 2)) |
238
|
|
|
|
239
|
|
|
@staticmethod |
240
|
|
|
def tile_to_lat_lon(z, x, y): |
241
|
|
|
""" |
242
|
|
|
Returns the lat/lon coordinates of the bottom-left corner of the input |
243
|
|
|
tile. Finds the value numerically (using the secant method). |
244
|
|
|
|
245
|
|
|
Inputs: |
246
|
|
|
z -- zoom level value for input tile |
247
|
|
|
x -- tile column value for input tile |
248
|
|
|
y -- tile row value for input tile |
249
|
|
|
""" |
250
|
|
|
n = 2.0**z |
251
|
|
|
lon = x / n * 360.0 - 180.0 |
252
|
|
|
my = (y - 2**(z - 1)) * 6378137 * pi * 2 / 2**z |
253
|
|
|
|
254
|
|
|
def f(phi): |
255
|
|
|
return EllipsoidalMercator.lat_to_northing(phi) - my |
256
|
|
|
|
257
|
|
|
lat = 0.0 |
258
|
|
|
oldLat = 1.0 |
259
|
|
|
diff = 1.0 |
260
|
|
|
while abs(diff) > 0.0001: |
261
|
|
|
newLat = lat - f(lat) * (lat - oldLat) / (f(lat) - f(oldLat)) |
262
|
|
|
if newLat > 1.48499697138: |
263
|
|
|
newLat = 1.48499697138 |
264
|
|
|
elif newLat < -1.48499697138: |
265
|
|
|
newLat = -1.48499697138 |
266
|
|
|
oldLat = lat |
267
|
|
|
lat = newLat |
268
|
|
|
diff = lat - oldLat |
269
|
|
|
lat = lat * 180.0 / pi |
270
|
|
|
return lat, lon |
271
|
|
|
|
272
|
|
|
def tile_to_meters(self, z, x, y): |
273
|
|
|
""" |
274
|
|
|
Returns the meter coordinates of the bottom-left corner of the input |
275
|
|
|
tile. |
276
|
|
|
|
277
|
|
|
Inputs: |
278
|
|
|
z -- zoom level value for input tile |
279
|
|
|
x -- tile column (longitude) value for input tile |
280
|
|
|
y -- tile row (latitude) value for input tile |
281
|
|
|
""" |
282
|
|
|
lat, lon = self.tile_to_lat_lon(z, x, y) |
283
|
|
|
meters_x = lon * self.origin_shift / 180.0 |
284
|
|
|
meters_y = self.lat_to_northing(lat * pi / 180.0) |
285
|
|
|
return meters_x, meters_y |
286
|
|
|
|
287
|
|
|
|
288
|
|
View Code Duplication |
class ScaledWorldMercator(EllipsoidalMercator): |
|
|
|
|
289
|
|
|
""" |
290
|
|
|
Scaled World Mercator projection class that holds specific calculations |
291
|
|
|
and formulas for EPSG9804/9805 projection proposed by NGA Craig Rollins. |
292
|
|
|
""" |
293
|
|
|
|
294
|
|
|
def __init__(self): |
295
|
|
|
""" |
296
|
|
|
Constructor |
297
|
|
|
""" |
298
|
|
|
super(ScaledWorldMercator, self).__init__() |
299
|
|
|
|
300
|
|
|
@staticmethod |
301
|
|
|
def pixel_size(z): |
302
|
|
|
""" |
303
|
|
|
Calculates the pixel size for a given zoom level. |
304
|
|
|
""" |
305
|
|
|
return 125829.12 / 2**z |
306
|
|
|
|
307
|
|
|
@staticmethod |
308
|
|
|
def lat_to_northing(lat): |
309
|
|
|
""" |
310
|
|
|
Convert a latitude to a northing |
311
|
|
|
/ / pi phi \ / 1 - e sin(phi) \ e/2 \ |
312
|
|
|
y(phi) = R ln| tan| --- + --- | | -------------- | | |
313
|
|
|
\ \ 4 2 / \ 1 + e sin(phi) / / |
314
|
|
|
""" |
315
|
|
|
r = 6378137.0 * 0.857385503731176 |
316
|
|
|
e = 0.081819190842621 |
317
|
|
|
return r * log(tan((pi / 2 + lat) / 2) * ((1 - e * sin(lat)) / |
318
|
|
|
(1 + e * sin(lat)))**(e / 2)) |
319
|
|
|
|
320
|
|
|
@staticmethod |
321
|
|
|
def tile_to_lat_lon(z, x, y): |
322
|
|
|
""" |
323
|
|
|
Returns the lat/lon coordinates of the bottom-left corner of the input |
324
|
|
|
tile. Finds the value numerically (using the secant method). A scale |
325
|
|
|
factor has been added specifically for scaled world mercator. |
326
|
|
|
|
327
|
|
|
Inputs: |
328
|
|
|
z -- zoom level value for input tile |
329
|
|
|
x -- tile column value for input tile |
330
|
|
|
y -- tile row value for input tile |
331
|
|
|
""" |
332
|
|
|
n = 2.0**z |
333
|
|
|
r = 6378137.0 * 0.857385503731176 |
334
|
|
|
lon = x / n * 360.0 - 180.0 |
335
|
|
|
my = (y - 2**(z - 1)) * r * pi * 2 / 2**z |
336
|
|
|
|
337
|
|
|
def f(phi): |
338
|
|
|
return ScaledWorldMercator.lat_to_northing(phi) - my |
339
|
|
|
|
340
|
|
|
lat = 0.0 |
341
|
|
|
oldLat = 1.0 |
342
|
|
|
diff = 1.0 |
343
|
|
|
while abs(diff) > 0.0001: |
344
|
|
|
newLat = lat - f(lat) * (lat - oldLat) / (f(lat) - f(oldLat)) |
345
|
|
|
if newLat > 1.4849969713855238: |
346
|
|
|
newLat = 1.4849969713855238 |
347
|
|
|
elif newLat < -1.4849969713855238: |
348
|
|
|
newLat = -1.4849969713855238 |
349
|
|
|
oldLat = lat |
350
|
|
|
lat = newLat |
351
|
|
|
diff = lat - oldLat |
352
|
|
|
lat = lat * 180.0 / pi |
353
|
|
|
return lat, lon |
354
|
|
|
|
355
|
|
|
def tile_to_meters(self, z, x, y): |
356
|
|
|
""" |
357
|
|
|
Returns the meter coordinates of the bottom-left corner of the input |
358
|
|
|
tile. A scale factor has been added to the longitude meters |
359
|
|
|
calculation. |
360
|
|
|
|
361
|
|
|
Inputs: |
362
|
|
|
z -- zoom level value for input tile |
363
|
|
|
x -- tile column (longitude) value for input tile |
364
|
|
|
y -- tile row (latitude) value for input tile |
365
|
|
|
""" |
366
|
|
|
lat, lon = self.tile_to_lat_lon(z, x, y) |
367
|
|
|
meters_x = lon * (pi * (6378137.0 * 0.857385503731176)) / 180.0 |
368
|
|
|
meters_y = self.lat_to_northing(lat * pi / 180.0) |
369
|
|
|
# Instituting a 2 decimal place round to ensure accuracy |
370
|
|
|
return meters_x, round(meters_y, 2) |
371
|
|
|
|
372
|
|
|
|
373
|
|
|
class ZoomMetadata(object): |
374
|
|
|
"""Return an object containing metadata about a given zoom level.""" |
375
|
|
|
|
376
|
|
|
@property |
377
|
|
|
def zoom(self): |
378
|
|
|
"""Return the zoom level of this metadata object.""" |
379
|
|
|
return self.__zoom |
380
|
|
|
|
381
|
|
|
@zoom.setter |
382
|
|
|
def zoom(self, value): |
383
|
|
|
"""Set the zoom level of this metadata object.""" |
384
|
|
|
self.__zoom = value |
385
|
|
|
|
386
|
|
|
@property |
387
|
|
|
def min_tile_col(self): |
388
|
|
|
"""Return the minimum tile column of this metadata object.""" |
389
|
|
|
return self.__min_tile_col |
390
|
|
|
|
391
|
|
|
@min_tile_col.setter |
392
|
|
|
def min_tile_col(self, value): |
393
|
|
|
"""Set the minimum tile column of this metadata object.""" |
394
|
|
|
self.__min_tile_col = value |
395
|
|
|
|
396
|
|
|
@property |
397
|
|
|
def max_tile_col(self): |
398
|
|
|
"""Return the maximum tile column of this metadata object.""" |
399
|
|
|
return self.__max_tile_col |
400
|
|
|
|
401
|
|
|
@max_tile_col.setter |
402
|
|
|
def max_tile_col(self, value): |
403
|
|
|
"""Set the maximum tile column of this metadata object.""" |
404
|
|
|
self.__max_tile_col = value |
405
|
|
|
|
406
|
|
|
@property |
407
|
|
|
def min_tile_row(self): |
408
|
|
|
"""Return the minimum tile row of this metadata object.""" |
409
|
|
|
return self.__min_tile_row |
410
|
|
|
|
411
|
|
|
@min_tile_row.setter |
412
|
|
|
def min_tile_row(self, value): |
413
|
|
|
"""Set the minimum tile row of this metadata object.""" |
414
|
|
|
self.__min_tile_row = value |
415
|
|
|
|
416
|
|
|
@property |
417
|
|
|
def max_tile_row(self): |
418
|
|
|
"""Return the maximum tile row of this metadata object.""" |
419
|
|
|
return self.__max_tile_row |
420
|
|
|
|
421
|
|
|
@max_tile_row.setter |
422
|
|
|
def max_tile_row(self, value): |
423
|
|
|
"""Set the maximum tile row of this metadata object.""" |
424
|
|
|
self.__max_tile_row = value |
425
|
|
|
|
426
|
|
|
@property |
427
|
|
|
def min_x(self): |
428
|
|
|
"""Return the minimum x coordinate of the bounding box.""" |
429
|
|
|
return self.__min_x |
430
|
|
|
|
431
|
|
|
@min_x.setter |
432
|
|
|
def min_x(self, value): |
433
|
|
|
"""Set the minimum x coordinate of the bounding box.""" |
434
|
|
|
self.__min_x = value |
435
|
|
|
|
436
|
|
|
@property |
437
|
|
|
def max_x(self): |
438
|
|
|
"""Return the maximum x coordinate of the bounding box.""" |
439
|
|
|
return self.__max_x |
440
|
|
|
|
441
|
|
|
@max_x.setter |
442
|
|
|
def max_x(self, value): |
443
|
|
|
"""Set the maximum x coordinate of the bounding box.""" |
444
|
|
|
self.__max_x = value |
445
|
|
|
|
446
|
|
|
@property |
447
|
|
|
def min_y(self): |
448
|
|
|
"""Return the minimum y coordinate of the bounding box.""" |
449
|
|
|
return self.__min_y |
450
|
|
|
|
451
|
|
|
@min_y.setter |
452
|
|
|
def min_y(self, value): |
453
|
|
|
"""Set the minimum y coordinate of the bounding box.""" |
454
|
|
|
self.__min_y = value |
455
|
|
|
|
456
|
|
|
@property |
457
|
|
|
def max_y(self): |
458
|
|
|
"""Return the maximum y coordinate of the bounding box.""" |
459
|
|
|
return self.__max_y |
460
|
|
|
|
461
|
|
|
@max_y.setter |
462
|
|
|
def max_y(self, value): |
463
|
|
|
"""Set the maximum y coordinate of the bounding box.""" |
464
|
|
|
self.__max_y = value |
465
|
|
|
|
466
|
|
|
@property |
467
|
|
|
def matrix_width(self): |
468
|
|
|
"""Number of tiles wide this matrix should be.""" |
469
|
|
|
#return (self.__matrix_width if hasattr(self, 'matrix_width') else None) |
470
|
|
|
return self.__matrix_width or None |
471
|
|
|
|
472
|
|
|
@matrix_width.setter |
473
|
|
|
def matrix_width(self, value): |
474
|
|
|
"""Set the number of tiles wide this matrix should be.""" |
475
|
|
|
self.__matrix_width = value |
476
|
|
|
|
477
|
|
|
@property |
478
|
|
|
def matrix_height(self): |
479
|
|
|
"""Number of tiles high this matrix should be.""" |
480
|
|
|
return self.__matrix_height or None |
481
|
|
|
|
482
|
|
|
@matrix_height.setter |
483
|
|
|
def matrix_height(self, value): |
484
|
|
|
"""Set the number of tiles high this matrix should be.""" |
485
|
|
|
self.__matrix_height = value |
486
|
|
|
|
487
|
|
|
|
488
|
|
|
class Geopackage(object): |
489
|
|
|
"""Object representing a GeoPackage container.""" |
490
|
|
|
|
491
|
|
|
def __enter__(self): |
492
|
|
|
"""With-statement caller""" |
493
|
|
|
return self |
494
|
|
|
|
495
|
|
|
def __init__(self, file_path, srs): |
496
|
|
|
"""Constructor.""" |
497
|
|
|
self.__file_path = file_path |
498
|
|
|
self.__srs = srs |
499
|
|
|
if self.__srs == 3857: |
500
|
|
|
self.__projection = Mercator() |
501
|
|
|
elif self.__srs == 3395: |
502
|
|
|
self.__projection = EllipsoidalMercator() |
503
|
|
|
elif self.__srs == 9804: |
504
|
|
|
self.__projection = ScaledWorldMercator() |
505
|
|
|
else: |
506
|
|
|
self.__projection = Geodetic() |
507
|
|
|
self.__db_con = connect(self.__file_path) |
508
|
|
|
self.__create_schema() |
509
|
|
|
|
510
|
|
|
def __create_schema(self): |
511
|
|
|
"""Create default geopackage schema on the database.""" |
512
|
|
|
with self.__db_con as db_con: |
513
|
|
|
cursor = db_con.cursor() |
514
|
|
|
cursor.execute(""" |
515
|
|
|
CREATE TABLE gpkg_contents ( |
516
|
|
|
table_name TEXT NOT NULL PRIMARY KEY, |
517
|
|
|
data_type TEXT NOT NULL, |
518
|
|
|
identifier TEXT UNIQUE, |
519
|
|
|
description TEXT DEFAULT '', |
520
|
|
|
last_change DATETIME NOT NULL DEFAULT |
521
|
|
|
(strftime('%Y-%m-%dT%H:%M:%fZ','now')), |
522
|
|
|
min_x DOUBLE, |
523
|
|
|
min_y DOUBLE, |
524
|
|
|
max_x DOUBLE, |
525
|
|
|
max_y DOUBLE, |
526
|
|
|
srs_id INTEGER, |
527
|
|
|
CONSTRAINT fk_gc_r_srs_id FOREIGN KEY (srs_id) |
528
|
|
|
REFERENCES gpkg_spatial_ref_sys(srs_id)); |
529
|
|
|
""") |
530
|
|
|
cursor.execute(""" |
531
|
|
|
CREATE TABLE gpkg_spatial_ref_sys ( |
532
|
|
|
srs_name TEXT NOT NULL, |
533
|
|
|
srs_id INTEGER NOT NULL PRIMARY KEY, |
534
|
|
|
organization TEXT NOT NULL, |
535
|
|
|
organization_coordsys_id INTEGER NOT NULL, |
536
|
|
|
definition TEXT NOT NULL, |
537
|
|
|
description TEXT); |
538
|
|
|
""") |
539
|
|
|
cursor.execute(""" |
540
|
|
|
CREATE TABLE gpkg_tile_matrix ( |
541
|
|
|
table_name TEXT NOT NULL, |
542
|
|
|
zoom_level INTEGER NOT NULL, |
543
|
|
|
matrix_width INTEGER NOT NULL, |
544
|
|
|
matrix_height INTEGER NOT NULL, |
545
|
|
|
tile_width INTEGER NOT NULL, |
546
|
|
|
tile_height INTEGER NOT NULL, |
547
|
|
|
pixel_x_size DOUBLE NOT NULL, |
548
|
|
|
pixel_y_size DOUBLE NOT NULL, |
549
|
|
|
CONSTRAINT pk_ttm PRIMARY KEY (table_name, zoom_level), |
550
|
|
|
CONSTRAINT fk_ttm_table_name FOREIGN KEY (table_name) |
551
|
|
|
REFERENCES gpkg_contents(table_name)); |
552
|
|
|
""") |
553
|
|
|
cursor.execute(""" |
554
|
|
|
CREATE TABLE gpkg_tile_matrix_set ( |
555
|
|
|
table_name TEXT NOT NULL PRIMARY KEY, |
556
|
|
|
srs_id INTEGER NOT NULL, |
557
|
|
|
min_x DOUBLE NOT NULL, |
558
|
|
|
min_y DOUBLE NOT NULL, |
559
|
|
|
max_x DOUBLE NOT NULL, |
560
|
|
|
max_y DOUBLE NOT NULL, |
561
|
|
|
CONSTRAINT fk_gtms_table_name FOREIGN KEY (table_name) |
562
|
|
|
REFERENCES gpkg_contents(table_name), |
563
|
|
|
CONSTRAINT fk_gtms_srs FOREIGN KEY (srs_id) |
564
|
|
|
REFERENCES gpkg_spatial_ref_sys(srs_id)); |
565
|
|
|
""") |
566
|
|
|
cursor.execute(""" |
567
|
|
|
CREATE TABLE tiles ( |
568
|
|
|
id INTEGER PRIMARY KEY AUTOINCREMENT, |
569
|
|
|
zoom_level INTEGER NOT NULL, |
570
|
|
|
tile_column INTEGER NOT NULL, |
571
|
|
|
tile_row INTEGER NOT NULL, |
572
|
|
|
tile_data BLOB NOT NULL, |
573
|
|
|
UNIQUE (zoom_level, tile_column, tile_row)); |
574
|
|
|
""") |
575
|
|
|
cursor.execute("pragma foreign_keys = 1;") |
576
|
|
|
# Insert EPSG values for tiles table |
577
|
|
|
wkt = """ |
578
|
|
|
PROJCS["WGS 84 / Pseudo-Mercator",GEOGCS["WGS 84",DATUM["WGS_1984" |
579
|
|
|
,SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]] |
580
|
|
|
,AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG", |
581
|
|
|
"8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]] |
582
|
|
|
,AUTHORITY["EPSG","9122"]]AUTHORITY["EPSG","4326"]],PROJECTION[ |
583
|
|
|
"Mercator_1SP"],PARAMETER["central_meridian",0],PARAMETER[ |
584
|
|
|
"scale_factor",1],PARAMETER["false_easting",0],PARAMETER[ |
585
|
|
|
"false_northing",0],UNIT["metre",1,AUTHORITY["EPSG","9001"]],AXIS[ |
586
|
|
|
"X",EAST],AXIS["Y",NORTH] |
587
|
|
|
""" |
588
|
|
|
|
589
|
|
|
cursor.execute(""" |
590
|
|
|
INSERT INTO gpkg_spatial_ref_sys ( |
591
|
|
|
srs_id, |
592
|
|
|
organization, |
593
|
|
|
organization_coordsys_id, |
594
|
|
|
srs_name, |
595
|
|
|
definition) |
596
|
|
|
VALUES (3857, ?, 3857, ?, ?) |
597
|
|
|
""", ("epsg", "WGS 84 / Pseudo-Mercator", wkt)) |
598
|
|
|
wkt = """ |
599
|
|
|
GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137, |
600
|
|
|
298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG", |
601
|
|
|
"6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT |
602
|
|
|
["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]], |
603
|
|
|
AUTHORITY["EPSG","4326"]] |
604
|
|
|
""" |
605
|
|
|
|
606
|
|
|
cursor.execute(""" |
607
|
|
|
INSERT INTO gpkg_spatial_ref_sys ( |
608
|
|
|
srs_id, |
609
|
|
|
organization, |
610
|
|
|
organization_coordsys_id, |
611
|
|
|
srs_name, |
612
|
|
|
definition) |
613
|
|
|
VALUES (4326, ?, 4326, ?, ?) |
614
|
|
|
""", ("epsg", "WGS 84", wkt)) |
615
|
|
|
wkt = """ |
616
|
|
|
PROJCS["WGS 84 / World Mercator",GEOGCS["WGS 84", |
617
|
|
|
DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563, |
618
|
|
|
AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]], |
619
|
|
|
PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]], |
620
|
|
|
UNIT["degree",0.01745329251994328,AUTHORITY["EPSG","9122"]], |
621
|
|
|
AUTHORITY["EPSG","4326"]],UNIT["metre",1,AUTHORITY["EPSG","9001"]], |
622
|
|
|
PROJECTION["Mercator_1SP"],PARAMETER["central_meridian",0], |
623
|
|
|
PARAMETER["scale_factor",1],PARAMETER["false_easting",0], |
624
|
|
|
PARAMETER["false_northing",0],AUTHORITY["EPSG","3395"], |
625
|
|
|
AXIS["Easting",EAST],AXIS["Northing",NORTH]] |
626
|
|
|
""" |
627
|
|
|
|
628
|
|
|
cursor.execute(""" |
629
|
|
|
INSERT INTO gpkg_spatial_ref_sys ( |
630
|
|
|
srs_id, |
631
|
|
|
organization, |
632
|
|
|
organization_coordsys_id, |
633
|
|
|
srs_name, |
634
|
|
|
definition) |
635
|
|
|
VALUES (3395, ?, 3395, ?, ?) |
636
|
|
|
""", ("epsg", "WGS 84 / World Mercator", wkt)) |
637
|
|
|
wkt = """ |
638
|
|
|
PROJCS["unnamed",GEOGCS["WGS 84", |
639
|
|
|
DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563, |
640
|
|
|
AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]], |
641
|
|
|
PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433], |
642
|
|
|
AUTHORITY["EPSG","4326"]],PROJECTION["Mercator_1SP"], |
643
|
|
|
PARAMETER["central_meridian",0], |
644
|
|
|
PARAMETER["scale_factor",0.803798909747978], |
645
|
|
|
PARAMETER["false_easting",0], |
646
|
|
|
PARAMETER["false_northing",0], |
647
|
|
|
UNIT["metre",1,AUTHORITY["EPSG","9001"]]] |
648
|
|
|
""" |
649
|
|
|
|
650
|
|
|
cursor.execute(""" |
651
|
|
|
INSERT INTO gpkg_spatial_ref_sys ( |
652
|
|
|
srs_id, |
653
|
|
|
organization, |
654
|
|
|
organization_coordsys_id, |
655
|
|
|
srs_name, |
656
|
|
|
definition) |
657
|
|
|
VALUES (9804, ?, 9804, ?, ?) |
658
|
|
|
""", ("epsg", "WGS 84 / Scaled World Mercator", wkt)) |
659
|
|
|
wkt = """undefined""" |
660
|
|
|
cursor.execute(""" |
661
|
|
|
INSERT INTO gpkg_spatial_ref_sys ( |
662
|
|
|
srs_id, |
663
|
|
|
organization, |
664
|
|
|
organization_coordsys_id, |
665
|
|
|
srs_name, |
666
|
|
|
definition) |
667
|
|
|
VALUES (-1, ?, -1, ?, ?) |
668
|
|
|
""", ("NONE", " ", wkt)) |
669
|
|
|
cursor.execute(""" |
670
|
|
|
INSERT INTO gpkg_spatial_ref_sys ( |
671
|
|
|
srs_id, |
672
|
|
|
organization, |
673
|
|
|
organization_coordsys_id, |
674
|
|
|
srs_name, |
675
|
|
|
definition) |
676
|
|
|
VALUES (0, ?, 0, ?, ?) |
677
|
|
|
""", ("NONE", " ", wkt)) |
678
|
|
|
cursor.execute(""" |
679
|
|
|
INSERT INTO gpkg_contents ( |
680
|
|
|
table_name, |
681
|
|
|
data_type, |
682
|
|
|
identifier, |
683
|
|
|
description, |
684
|
|
|
min_x, |
685
|
|
|
max_x, |
686
|
|
|
min_y, |
687
|
|
|
max_y, |
688
|
|
|
srs_id) |
689
|
|
|
VALUES (?, ?, ?, ?, 0, 0, 0, 0, ?); |
690
|
|
|
""", ("tiles", "tiles", "Raster Tiles", |
691
|
|
|
"Created by tiles2gpkg_parallel.py, written by S. Lander", |
692
|
|
|
self.__srs)) |
693
|
|
|
# Add GP10 to the Sqlite header |
694
|
|
|
cursor.execute("pragma application_id = 1196437808;") |
695
|
|
|
|
696
|
|
|
@property |
697
|
|
|
def file_path(self): |
698
|
|
|
"""Return the path of the geopackage database on the file system.""" |
699
|
|
|
return self.__file_path |
700
|
|
|
|
701
|
|
|
def update_metadata(self, metadata): |
702
|
|
|
"""Update the metadata of the geopackage database after tile merge.""" |
703
|
|
|
# initialize a new projection |
704
|
|
|
with self.__db_con as db_con: |
705
|
|
|
cursor = db_con.cursor() |
706
|
|
|
tile_matrix_stmt = """ |
707
|
|
|
INSERT OR REPLACE INTO gpkg_tile_matrix ( |
708
|
|
|
table_name, |
709
|
|
|
zoom_level, |
710
|
|
|
matrix_width, |
711
|
|
|
matrix_height, |
712
|
|
|
tile_width, |
713
|
|
|
tile_height, |
714
|
|
|
pixel_x_size, |
715
|
|
|
pixel_y_size) |
716
|
|
|
VALUES (?, ?, ?, ?, ?, ?, ?, ?); |
717
|
|
|
""" |
718
|
|
|
|
719
|
|
|
# iterate through each zoom level object and assign |
720
|
|
|
# matrix data to table |
721
|
|
|
for level in metadata: |
722
|
|
|
cursor.execute( |
723
|
|
|
tile_matrix_stmt, |
724
|
|
|
("tiles", level.zoom, level.matrix_width, |
725
|
|
|
level.matrix_height, self.__projection.tile_size, |
726
|
|
|
self.__projection.tile_size, |
727
|
|
|
self.__projection.pixel_size(level.zoom), |
728
|
|
|
self.__projection.pixel_size(level.zoom))) |
729
|
|
|
contents_stmt = """ |
730
|
|
|
UPDATE gpkg_contents SET |
731
|
|
|
min_x = ?, |
732
|
|
|
min_y = ?, |
733
|
|
|
max_x = ?, |
734
|
|
|
max_y = ? |
735
|
|
|
WHERE table_name = 'tiles'; |
736
|
|
|
""" |
737
|
|
|
|
738
|
|
|
tile_matrix_set_stmt = """ |
739
|
|
|
INSERT OR REPLACE INTO gpkg_tile_matrix_set ( |
740
|
|
|
table_name, |
741
|
|
|
srs_id, |
742
|
|
|
min_x, |
743
|
|
|
min_y, |
744
|
|
|
max_x, |
745
|
|
|
max_y) |
746
|
|
|
VALUES (?, ?, ?, ?, ?, ?); |
747
|
|
|
""" |
748
|
|
|
|
749
|
|
|
# get bounding box info based on |
750
|
|
|
top_level = min(metadata, key=attrgetter('zoom')) |
751
|
|
|
#top_level.min_x = self.__projection.truncate(top_level.min_x) |
752
|
|
|
#top_level.min_y = self.__projection.truncate(top_level.min_y) |
753
|
|
|
#top_level.max_x = self.__projection.truncate(top_level.max_x) |
754
|
|
|
#top_level.max_y = self.__projection.truncate(top_level.max_y) |
755
|
|
|
top_level.min_x = top_level.min_x |
756
|
|
|
top_level.min_y = top_level.min_y |
757
|
|
|
top_level.max_x = top_level.max_x |
758
|
|
|
top_level.max_y = top_level.max_y |
759
|
|
|
# write bounds and matrix set info to table |
760
|
|
|
cursor.execute(contents_stmt, (top_level.min_x, top_level.min_y, |
761
|
|
|
top_level.max_x, top_level.max_y)) |
762
|
|
|
cursor.execute(tile_matrix_set_stmt, |
763
|
|
|
('tiles', self.__srs, top_level.min_x, |
764
|
|
|
top_level.min_y, top_level.max_x, top_level.max_y)) |
765
|
|
|
|
766
|
|
|
def execute(self, statement, inputs=None): |
767
|
|
|
"""Execute a prepared SQL statement on this geopackage database.""" |
768
|
|
|
with self.__db_con as db_con: |
769
|
|
|
cursor = db_con.cursor() |
770
|
|
|
if inputs is not None: |
771
|
|
|
result_cursor = cursor.execute(statement, inputs) |
772
|
|
|
else: |
773
|
|
|
result_cursor = cursor.execute(statement) |
774
|
|
|
return result_cursor |
775
|
|
|
|
776
|
|
|
def assimilate(self, source): |
777
|
|
|
"""Assimilate .gpkg.part tiles into this geopackage database.""" |
778
|
|
|
if not exists(source): |
779
|
|
|
raise IOError |
780
|
|
|
with self.__db_con as db_con: |
781
|
|
|
cursor = db_con.cursor() |
782
|
|
|
cursor.execute("pragma synchronous = off;") |
783
|
|
|
cursor.execute("pragma journal_mode = off;") |
784
|
|
|
cursor.execute("pragma page_size = 65536;") |
785
|
|
|
#print "Merging", source, "into", self.__file_path, "..." |
786
|
|
|
query = "attach '" + source + "' as source;" |
787
|
|
|
cursor.execute(query) |
788
|
|
|
try: |
789
|
|
|
cursor.execute("""INSERT OR REPLACE INTO tiles |
790
|
|
|
(zoom_level, tile_column, tile_row, tile_data) |
791
|
|
|
SELECT zoom_level, tile_column, tile_row, tile_data |
792
|
|
|
FROM source.tiles;""") |
793
|
|
|
cursor.execute("detach source;") |
794
|
|
|
except Error as err: |
795
|
|
|
print("Error: {}".format(type(err))) |
796
|
|
|
print("Error msg:".format(err)) |
797
|
|
|
raise |
798
|
|
|
remove(source) |
799
|
|
|
|
800
|
|
|
def __exit__(self, type, value, traceback): |
801
|
|
|
"""Resource cleanup on destruction.""" |
802
|
|
|
self.__db_con.close() |
803
|
|
|
|
804
|
|
|
|
805
|
|
|
class TempDB(object): |
806
|
|
|
""" |
807
|
|
|
Returns a temporary sqlite database to hold tiles for async workers. |
808
|
|
|
Has a <filename>.gpkg.part file format. |
809
|
|
|
""" |
810
|
|
|
|
811
|
|
|
def __enter__(self): |
812
|
|
|
"""With-statement caller.""" |
813
|
|
|
return self |
814
|
|
|
|
815
|
|
|
def __init__(self, filename): |
816
|
|
|
""" |
817
|
|
|
Constructor. |
818
|
|
|
|
819
|
|
|
Inputs: |
820
|
|
|
filename -- the filename this database will be created with |
821
|
|
|
""" |
822
|
|
|
uid = uuid4() |
823
|
|
|
self.name = uid.hex + '.gpkg.part' |
824
|
|
|
self.__file_path = join(filename, self.name) |
825
|
|
|
self.__db_con = connect(self.__file_path) |
826
|
|
|
with self.__db_con as db_con: |
827
|
|
|
cursor = db_con.cursor() |
828
|
|
|
stmt = """ |
829
|
|
|
CREATE TABLE tiles ( |
830
|
|
|
id INTEGER PRIMARY KEY AUTOINCREMENT, |
831
|
|
|
zoom_level INTEGER NOT NULL, |
832
|
|
|
tile_column INTEGER NOT NULL, |
833
|
|
|
tile_row INTEGER NOT NULL, |
834
|
|
|
tile_data BLOB NOT NULL, |
835
|
|
|
UNIQUE (zoom_level, tile_column, tile_row)); |
836
|
|
|
""" |
837
|
|
|
|
838
|
|
|
cursor.execute(stmt) |
839
|
|
|
# Enable pragma for fast sqlite creation |
840
|
|
|
cursor.execute("pragma synchronous = off;") |
841
|
|
|
cursor.execute("pragma journal_mode = off;") |
842
|
|
|
cursor.execute("pragma page_size = 80000;") |
843
|
|
|
cursor.execute("pragma foreign_keys = 1;") |
844
|
|
|
self.image_blob_stmt = """ |
845
|
|
|
INSERT INTO tiles |
846
|
|
|
(zoom_level, tile_column, tile_row, tile_data) |
847
|
|
|
VALUES (?,?,?,?) |
848
|
|
|
""" |
849
|
|
|
|
850
|
|
|
def execute(self, statement, inputs=None): |
851
|
|
|
with self.__db_con as db_con: |
852
|
|
|
cursor = db_con.cursor() |
853
|
|
|
if inputs is not None: |
854
|
|
|
result_cursor = cursor.execute(statement, inputs) |
855
|
|
|
else: |
856
|
|
|
result_cursor = cursor.execute(statement) |
857
|
|
|
return result_cursor |
858
|
|
|
|
859
|
|
|
def insert_image_blob(self, z, x, y, data): |
860
|
|
|
""" |
861
|
|
|
Inserts a binary data array containing an image into a sqlite3 |
862
|
|
|
database. |
863
|
|
|
|
864
|
|
|
Inputs: |
865
|
|
|
z -- the zoom level of the binary data |
866
|
|
|
x -- the row number of the data |
867
|
|
|
y -- the column number of the data |
868
|
|
|
data -- the image data containing in a binary array |
869
|
|
|
""" |
870
|
|
|
with self.__db_con as db_con: |
871
|
|
|
cursor = db_con.cursor() |
872
|
|
|
cursor.execute(self.image_blob_stmt, (z, x, y, data)) |
873
|
|
|
|
874
|
|
|
def __exit__(self, type, value, traceback): |
875
|
|
|
"""Resource cleanup on destruction.""" |
876
|
|
|
self.__db_con.close() |
877
|
|
|
|
878
|
|
|
|
879
|
|
|
def img_to_buf(img, img_type, jpeg_quality=75): |
880
|
|
|
""" |
881
|
|
|
Returns a buffer array with image binary data for the input image. |
882
|
|
|
This code is based on logic implemented in MapProxy to convert PNG |
883
|
|
|
images to JPEG then return the buffer. |
884
|
|
|
|
885
|
|
|
Inputs: |
886
|
|
|
img -- an image on the filesystem to be converted to binary |
887
|
|
|
img_type -- the MIME type of the image (JPG, PNG) |
888
|
|
|
""" |
889
|
|
|
defaults = {} |
890
|
|
|
buf = ioBuffer() |
891
|
|
|
if img_type == 'jpeg': |
892
|
|
|
img.convert('RGB') |
893
|
|
|
# Hardcoding a default compression of 75% for JPEGs |
894
|
|
|
defaults['quality'] = jpeg_quality |
895
|
|
|
elif img_type == 'source': |
896
|
|
|
img_type = img.format |
897
|
|
|
img.save(buf, img_type, **defaults) |
898
|
|
|
buf.seek(0) |
899
|
|
|
return buf |
900
|
|
|
|
901
|
|
|
|
902
|
|
|
def img_has_transparency(img): |
903
|
|
|
""" |
904
|
|
|
Returns a 0 if the input image has no transparency, 1 if it has some, |
905
|
|
|
and -1 if the image is fully transparent. Tiles *should be a perfect |
906
|
|
|
square (e.g, 256x256), so it can be safe to assume the first dimension |
907
|
|
|
will match the second. This will ensure compatibility with different |
908
|
|
|
tile sizes other than 256x256. This code is based on logic implemented |
909
|
|
|
in MapProxy to check for images that have transparency. |
910
|
|
|
|
911
|
|
|
Inputs: |
912
|
|
|
img -- an Image object from the PIL library |
913
|
|
|
""" |
914
|
|
|
size = img.size[0] |
915
|
|
|
if img.mode == 'P': |
916
|
|
|
# For paletted images |
917
|
|
|
if img.info.get('transparency', False): |
918
|
|
|
return True |
919
|
|
|
# Convert to RGBA to check alpha |
920
|
|
|
img = img.convert('RGBA') |
921
|
|
|
if img.mode == 'RGBA': |
922
|
|
|
# Returns the number of pixels in this image that are transparent |
923
|
|
|
# Assuming a tile size of 256, 65536 would be fully transparent |
924
|
|
|
transparent_pixels = img.histogram()[-size] |
925
|
|
|
if transparent_pixels == 0: |
926
|
|
|
# No transparency |
927
|
|
|
return 0 |
928
|
|
|
elif 0 < transparent_pixels < (size * size): |
929
|
|
|
# Image has some transparency |
930
|
|
|
return 1 |
931
|
|
|
else: |
932
|
|
|
# Image is fully transparent, and can be discarded |
933
|
|
|
return -1 |
934
|
|
|
#return img.histogram()[-size] |
935
|
|
|
return False |
936
|
|
|
|
937
|
|
|
|
938
|
|
|
def file_count(base_dir): |
939
|
|
|
""" |
940
|
|
|
A function that finds all image tiles in a base directory. The base |
941
|
|
|
directory should be arranged in TMS format, i.e. z/x/y. |
942
|
|
|
|
943
|
|
|
Inputs: |
944
|
|
|
base_dir -- the name of the TMS folder containing tiles. |
945
|
|
|
|
946
|
|
|
Returns: |
947
|
|
|
A list of dictionary objects containing the full file path and TMS |
948
|
|
|
coordinates of the image tile. |
949
|
|
|
""" |
950
|
|
|
print("Calculating number of tiles, this could take a while...") |
951
|
|
|
file_list = [] |
952
|
|
|
# Avoiding dots (functional references) will increase performance of |
953
|
|
|
# the loop because they will not be reevaluated each iteration. |
954
|
|
|
for root, sub_folders, files in walk(base_dir): |
955
|
|
|
temp_list = [join(root, f) for f in files if f.endswith(IMAGE_TYPES)] |
956
|
|
|
file_list += temp_list |
957
|
|
|
print("Found {} total tiles.".format(len(file_list))) |
958
|
|
|
return [split_all(item) for item in file_list] |
959
|
|
|
|
960
|
|
|
|
961
|
|
|
def split_all(path): |
962
|
|
|
""" |
963
|
|
|
Function that parses TMS coordinates from a full images file path. |
964
|
|
|
|
965
|
|
|
Inputs: |
966
|
|
|
path -- a full file path to an image tile. |
967
|
|
|
|
968
|
|
|
Returns: |
969
|
|
|
A dictionary containing the TMS coordinates of the tile and its full |
970
|
|
|
file path. |
971
|
|
|
""" |
972
|
|
|
parts = [] |
973
|
|
|
full_path = path |
974
|
|
|
# Parse out the tms coordinates |
975
|
|
|
for i in xrange(3): |
976
|
|
|
head, tail = split(path) |
977
|
|
|
parts.append(tail) |
978
|
|
|
path = head |
979
|
|
|
file_dict = dict(y=int(parts[0].split('.')[0]), |
980
|
|
|
x=int(parts[1]), |
981
|
|
|
z=int(parts[2]), |
982
|
|
|
path=full_path) |
983
|
|
|
return file_dict |
984
|
|
|
|
985
|
|
|
|
986
|
|
|
def worker_map(temp_db, tile_dict, extra_args, invert_y): |
987
|
|
|
""" |
988
|
|
|
Function responsible for sending the correct oriented tile data to a |
989
|
|
|
temporary sqlite3 database. |
990
|
|
|
|
991
|
|
|
Inputs: |
992
|
|
|
temp_db -- a temporary sqlite3 database that will hold this worker's tiles |
993
|
|
|
tile_dict -- a dictionary with TMS coordinates and file path for a tile |
994
|
|
|
tile_info -- a list of ZoomMetadata objects pre-generated for this tile set |
995
|
|
|
imagery -- the type of image format to send to the sqlite3 database |
996
|
|
|
invert_y -- a function that will flip the Y axis of the tile if present |
997
|
|
|
""" |
998
|
|
|
tile_info = extra_args['tile_info'] |
999
|
|
|
imagery = extra_args['imagery'] |
1000
|
|
|
jpeg_quality = extra_args['jpeg_quality'] |
1001
|
|
|
zoom = tile_dict['z'] |
1002
|
|
|
level = next((item for item in tile_info if item.zoom == zoom), None) |
1003
|
|
|
x_row = tile_dict['x'] - level.min_tile_row |
1004
|
|
|
if invert_y is not None: |
1005
|
|
|
y_offset = invert_y(tile_dict['z'], level.max_tile_col) |
1006
|
|
|
y_column = invert_y(tile_dict['z'], tile_dict['y']) |
1007
|
|
|
y_column -= y_offset |
1008
|
|
|
else: |
1009
|
|
|
y_column = tile_dict['y'] - level.min_tile_col |
1010
|
|
|
if IOPEN is not None: |
1011
|
|
|
img = IOPEN(tile_dict['path'], 'r') |
1012
|
|
|
data = ioBuffer() |
1013
|
|
|
if imagery == 'mixed': |
1014
|
|
|
if img_has_transparency(img): |
1015
|
|
|
data = img_to_buf(img, 'png', jpeg_quality).read() |
1016
|
|
|
else: |
1017
|
|
|
data = img_to_buf(img, 'jpeg', jpeg_quality).read() |
1018
|
|
|
else: |
1019
|
|
|
data = img_to_buf(img, imagery, jpeg_quality).read() |
1020
|
|
|
temp_db.insert_image_blob(zoom, x_row, y_column, sbinary(data)) |
1021
|
|
|
else: |
1022
|
|
|
file_handle = open(tile_dict['path'], 'rb') |
1023
|
|
|
data = buffer(file_handle.read()) |
1024
|
|
|
temp_db.insert_image_blob(zoom, x_row, y_column, data) |
1025
|
|
|
file_handle.close() |
1026
|
|
|
|
1027
|
|
|
|
1028
|
|
|
def sqlite_worker(file_list, extra_args): |
1029
|
|
|
""" |
1030
|
|
|
Worker function called by asynchronous processes. This function |
1031
|
|
|
iterates through a set of tiles to process them into a TempDB object. |
1032
|
|
|
|
1033
|
|
|
Inputs: |
1034
|
|
|
file_list -- an array containing a subset of tiles that will be processed |
1035
|
|
|
by this function into a TempDB object |
1036
|
|
|
base_dir -- the directory in which the geopackage will be created, |
1037
|
|
|
.gpkg.part files will be generated here |
1038
|
|
|
metadata -- a ZoomLevelMetadata object containing information about |
1039
|
|
|
the tiles in the TMS directory |
1040
|
|
|
""" |
1041
|
|
|
temp_db = TempDB(extra_args['root_dir']) |
1042
|
|
|
with TempDB(extra_args['root_dir']) as temp_db: |
1043
|
|
|
invert_y = None |
1044
|
|
|
if extra_args['lower_left']: |
1045
|
|
|
if extra_args['srs'] == 3857: |
1046
|
|
|
invert_y = Mercator.invert_y |
1047
|
|
|
elif extra_args['srs'] == 4326: |
1048
|
|
|
invert_y = Geodetic.invert_y |
1049
|
|
|
elif extra_args['srs'] == 3395: |
1050
|
|
|
invert_y = EllipsoidalMercator.invert_y |
1051
|
|
|
elif extra_args['srs'] == 9804: |
1052
|
|
|
invert_y = ScaledWorldMercator.invert_y |
1053
|
|
|
[worker_map(temp_db, item, extra_args, invert_y) for item in file_list] |
1054
|
|
|
|
1055
|
|
|
|
1056
|
|
|
def allocate(cores, pool, file_list, extra_args): |
1057
|
|
|
""" |
1058
|
|
|
Recursive function that fairly distributes tiles to asynchronous worker |
1059
|
|
|
processes. For N processes and C cores, N=C if C is divisible by 2. If |
1060
|
|
|
not, then N is the largest factor of 8 that is still less than C. |
1061
|
|
|
""" |
1062
|
|
|
if cores is 1: |
1063
|
|
|
print("Spawning worker with {} files".format(len(file_list))) |
1064
|
|
|
return [pool.apply_async(sqlite_worker, [file_list, extra_args])] |
1065
|
|
|
else: |
1066
|
|
|
files = len(file_list) |
1067
|
|
|
head = allocate( |
1068
|
|
|
int(cores / 2), pool, file_list[:int(files / 2)], extra_args) |
1069
|
|
|
tail = allocate( |
1070
|
|
|
int(cores / 2), pool, file_list[int(files / 2):], extra_args) |
1071
|
|
|
return head + tail |
1072
|
|
|
|
1073
|
|
|
|
1074
|
|
|
def build_lut(file_list, lower_left, srs): |
1075
|
|
|
""" |
1076
|
|
|
Build a lookup table that aids in metadata generation. |
1077
|
|
|
|
1078
|
|
|
Inputs: |
1079
|
|
|
file_list -- the file_list dict made with file_count() |
1080
|
|
|
lower_left -- bool indicating tile grid numbering scheme (tms or wmts) |
1081
|
|
|
srs -- the spatial reference system of the tile grid |
1082
|
|
|
|
1083
|
|
|
Returns: |
1084
|
|
|
An array of ZoomLevelMetadata objects that describe each zoom level of the |
1085
|
|
|
tile grid. |
1086
|
|
|
""" |
1087
|
|
|
# Initialize a projection class |
1088
|
|
|
if srs == 3857: |
1089
|
|
|
projection = Mercator() |
1090
|
|
|
elif srs == 4326: |
1091
|
|
|
projection = Geodetic() |
1092
|
|
|
elif srs == 9804: |
1093
|
|
|
projection = ScaledWorldMercator() |
1094
|
|
|
else: |
1095
|
|
|
projection = EllipsoidalMercator() |
1096
|
|
|
# Create a list of zoom levels from the base directory |
1097
|
|
|
zoom_levels = list(set([int(item['z']) for item in file_list])) |
1098
|
|
|
zoom_levels.sort() |
1099
|
|
|
matrix = [] |
1100
|
|
|
# For every zoom in the list... |
1101
|
|
|
for zoom in zoom_levels: |
1102
|
|
|
# create a new ZoomMetadata object... |
1103
|
|
|
level = ZoomMetadata() |
1104
|
|
|
level.zoom = zoom |
1105
|
|
|
# Sometimes, tiling programs do not generate the folders responsible |
1106
|
|
|
# for the X axis if no tiles are being made within them. This results |
1107
|
|
|
# in tiles "shifting" because of the way they are renumbered when |
1108
|
|
|
# placed into a geopackage. |
1109
|
|
|
# To fix, is there a zoom level preceding this one... |
1110
|
|
|
if zoom - 1 in [item for item in zoom_levels if item == (zoom - 1)]: |
1111
|
|
|
# there is, now retrieve it.... |
1112
|
|
|
(prev, ) = ([item for item in matrix if item.zoom == (zoom - 1)]) |
1113
|
|
|
# and fix the grid alignment values |
1114
|
|
|
level.min_tile_row = 2 * prev.min_tile_row |
1115
|
|
|
level.min_tile_col = 2 * prev.min_tile_col |
1116
|
|
|
level.max_tile_row = 2 * prev.max_tile_row + 1 |
1117
|
|
|
level.max_tile_col = 2 * prev.max_tile_col + 1 |
1118
|
|
|
# Calculate the width and height |
1119
|
|
|
level.matrix_width = prev.matrix_width * 2 |
1120
|
|
|
level.matrix_height = prev.matrix_height * 2 |
1121
|
|
|
else: |
1122
|
|
|
# Get all possible x and y values... |
1123
|
|
|
x_vals = [int(item['x']) |
1124
|
|
|
for item in file_list if int(item['z']) == zoom] |
1125
|
|
|
y_vals = [int(item['y']) |
1126
|
|
|
for item in file_list if int(item['z']) == zoom] |
1127
|
|
|
# then get the min/max values for each. |
1128
|
|
|
level.min_tile_row, level.max_tile_row = min(x_vals), max(x_vals) |
1129
|
|
|
level.min_tile_col, level.max_tile_col = min(y_vals), max(y_vals) |
1130
|
|
|
# Fill in the matrix width and height for this top level |
1131
|
|
|
x_width_max = max([item[ |
1132
|
|
|
'x'] for item in file_list if item['z'] == level.zoom]) |
1133
|
|
|
x_width_min = min([item[ |
1134
|
|
|
'x'] for item in file_list if item['z'] == level.zoom]) |
1135
|
|
|
level.matrix_width = (x_width_max - x_width_min) + 1 |
1136
|
|
|
y_height_max = max([item[ |
1137
|
|
|
'y'] for item in file_list if item['z'] == level.zoom]) |
1138
|
|
|
y_height_min = min([item[ |
1139
|
|
|
'y'] for item in file_list if item['z'] == level.zoom]) |
1140
|
|
|
level.matrix_height = (y_height_max - y_height_min) + 1 |
1141
|
|
|
if lower_left: |
1142
|
|
|
# TMS-style tile grid, so to calc the top left corner of the grid, |
1143
|
|
|
# you must get the min x (row) value and the max y (col) value + 1. |
1144
|
|
|
# You are adding 1 to the y value because the math to calc the |
1145
|
|
|
# coord assumes you want the bottom left corner, not the top left. |
1146
|
|
|
# Similarly, to get the bottom right corner, add 1 to x value. |
1147
|
|
|
level.min_x, level.max_y = projection.get_coord( |
1148
|
|
|
level.zoom, level.min_tile_row, level.max_tile_col + 1) |
1149
|
|
|
level.max_x, level.min_y = projection.get_coord( |
1150
|
|
|
level.zoom, level.max_tile_row + 1, level.min_tile_col) |
1151
|
|
|
else: |
1152
|
|
|
# WMTS-style tile grid, so to calc the top left corner of the grid, |
1153
|
|
|
# you must get the min x (row value and the min y (col) value + 1. |
1154
|
|
|
# You are adding 1 to the y value because the math to calc the |
1155
|
|
|
# coord assumes you want the bottom left corner, not the top left. |
1156
|
|
|
# Similarly, to get the bottom right corner, add 1 to x value. |
1157
|
|
|
# -- Since this is WMTS, we must invert the Y axis before we calc |
1158
|
|
|
inv_min_y = projection.invert_y(level.zoom, level.min_tile_col) |
1159
|
|
|
inv_max_y = projection.invert_y(level.zoom, level.max_tile_col) |
1160
|
|
|
level.min_x, level.max_y = projection.get_coord( |
1161
|
|
|
level.zoom, level.min_tile_row, inv_min_y + 1) |
1162
|
|
|
level.max_x, level.min_y = projection.get_coord( |
1163
|
|
|
level.zoom, level.max_tile_row + 1, inv_max_y) |
1164
|
|
|
# Finally, add this ZoomMetadata object to the list |
1165
|
|
|
matrix.append(level) |
1166
|
|
|
return matrix |
1167
|
|
|
|
1168
|
|
|
|
1169
|
|
|
def combine_worker_dbs(out_geopackage): |
1170
|
|
|
""" |
1171
|
|
|
Searches for .gpkg.part files in the base directory and merges them |
1172
|
|
|
into one Geopackage file |
1173
|
|
|
|
1174
|
|
|
Inputs: |
1175
|
|
|
out_geopackage -- the final output geopackage file |
1176
|
|
|
""" |
1177
|
|
|
base_dir = split(out_geopackage.file_path)[0] |
1178
|
|
|
if base_dir == "": |
1179
|
|
|
base_dir = "." |
1180
|
|
|
glob_path = join(base_dir + '/*.gpkg.part') |
1181
|
|
|
file_list = glob(glob_path) |
1182
|
|
|
print("Merging temporary databases...") |
1183
|
|
|
#[out_geopackage.assimilate(f) for f in file_list] |
1184
|
|
|
itr = len(file_list) |
1185
|
|
|
status = ["|", "/", "-", "\\"] |
1186
|
|
|
counter = 0 |
1187
|
|
|
for tdb in file_list: |
1188
|
|
|
comp = len(file_list) - itr |
1189
|
|
|
itr -= 1 |
1190
|
|
|
out_geopackage.assimilate(tdb) |
1191
|
|
|
if tdb == file_list[-1]: |
1192
|
|
|
stdout.write("\r[X] Progress: [" + "==" * comp + " " * itr + "]") |
1193
|
|
|
else: |
1194
|
|
|
stdout.write("\r[" + status[counter] + "] Progress: [" + "==" * |
1195
|
|
|
comp + " " * itr + "]") |
1196
|
|
|
stdout.flush() |
1197
|
|
|
if counter != len(status) - 1: |
1198
|
|
|
counter += 1 |
1199
|
|
|
else: |
1200
|
|
|
counter = 0 |
1201
|
|
|
print(" All geopackages merged!") |
1202
|
|
|
|
1203
|
|
|
|
1204
|
|
|
def main(arg_list): |
1205
|
|
|
""" |
1206
|
|
|
Create a geopackage from a directory of tiles arranged in TMS or WMTS |
1207
|
|
|
format. |
1208
|
|
|
|
1209
|
|
|
Inputs: |
1210
|
|
|
arg_list -- an ArgumentParser object containing command-line options and |
1211
|
|
|
flags |
1212
|
|
|
""" |
1213
|
|
|
# Build the file dictionary |
1214
|
|
|
files = file_count(arg_list.source_folder) |
1215
|
|
|
if len(files) == 0: |
1216
|
|
|
# If there are no files, exit the script |
1217
|
|
|
print(" Ensure the correct source tile directory was specified.") |
1218
|
|
|
exit(1) |
1219
|
|
|
# Is the input tile grid aligned to lower-left or not? |
1220
|
|
|
lower_left = arg_list.tileorigin == 'll' or arg_list.tileorigin == 'sw' |
1221
|
|
|
# Get the output file destination directory |
1222
|
|
|
root_dir, _ = split(arg_list.output_file) |
1223
|
|
|
# Build the tile matrix info object |
1224
|
|
|
tile_info = build_lut(files, lower_left, arg_list.srs) |
1225
|
|
|
# Initialize the output file |
1226
|
|
|
if arg_list.threading: |
1227
|
|
|
# Enable tiling on multiple CPU cores |
1228
|
|
|
cores = cpu_count() |
1229
|
|
|
pool = Pool(cores) |
1230
|
|
|
# Build allocate dictionary |
1231
|
|
|
extra_args = dict(root_dir=root_dir, |
1232
|
|
|
tile_info=tile_info, |
1233
|
|
|
lower_left=lower_left, |
1234
|
|
|
srs=arg_list.srs, |
1235
|
|
|
imagery=arg_list.imagery, |
1236
|
|
|
jpeg_quality=arg_list.q) |
1237
|
|
|
results = allocate(cores, pool, files, extra_args) |
1238
|
|
|
status = ["|", "/", "-", "\\"] |
1239
|
|
|
counter = 0 |
1240
|
|
|
try: |
1241
|
|
|
while True: |
1242
|
|
|
rem = sum([1 for item in results if not item.ready()]) |
1243
|
|
|
if rem == 0: |
1244
|
|
|
stdout.write("\r[X] Progress: [" + "==" * (cores - rem) + |
1245
|
|
|
" " * rem + "]") |
1246
|
|
|
stdout.flush() |
1247
|
|
|
print(" All Done!") |
1248
|
|
|
break |
1249
|
|
|
else: |
1250
|
|
|
stdout.write("\r[" + status[counter] + "] Progress: [" + |
1251
|
|
|
"==" * (cores - rem) + " " * rem + "]") |
1252
|
|
|
stdout.flush() |
1253
|
|
|
if counter != len(status) - 1: |
1254
|
|
|
counter += 1 |
1255
|
|
|
else: |
1256
|
|
|
counter = 0 |
1257
|
|
|
sleep(.25) |
1258
|
|
|
pool.close() |
1259
|
|
|
pool.join() |
1260
|
|
|
except KeyboardInterrupt: |
1261
|
|
|
print(" Interrupted!") |
1262
|
|
|
pool.terminate() |
1263
|
|
|
exit(1) |
1264
|
|
|
else: |
1265
|
|
|
# Debugging call to bypass multiprocessing (-T) |
1266
|
|
|
extra_args = dict(root_dir=root_dir, |
1267
|
|
|
tile_info=tile_info, |
1268
|
|
|
lower_left=lower_left, |
1269
|
|
|
srs=arg_list.srs, |
1270
|
|
|
imagery=arg_list.imagery, |
1271
|
|
|
jpeg_quality=arg_list.q) |
1272
|
|
|
sqlite_worker(files, extra_args) |
1273
|
|
|
# Combine the individual temp databases into the output file |
1274
|
|
|
with Geopackage(arg_list.output_file, arg_list.srs) as gpkg: |
1275
|
|
|
combine_worker_dbs(gpkg) |
1276
|
|
|
# Using the data in the output file, create the metadata for it |
1277
|
|
|
gpkg.update_metadata(tile_info) |
1278
|
|
|
print("Complete") |
1279
|
|
|
|
1280
|
|
|
|
1281
|
|
|
if __name__ == '__main__': |
1282
|
|
|
print(""" |
1283
|
|
|
tiles2gpkg_parallel.py Copyright (C) 2014 Reinventing Geospatial, Inc |
1284
|
|
|
This program comes with ABSOLUTELY NO WARRANTY. |
1285
|
|
|
This is free software, and you are welcome to redistribute it |
1286
|
|
|
under certain conditions. |
1287
|
|
|
""") |
1288
|
|
|
PARSER = ArgumentParser(description="Convert TMS folder into geopackage") |
1289
|
|
|
PARSER.add_argument("source_folder", |
1290
|
|
|
metavar="source", |
1291
|
|
|
help="Source folder of TMS files.") |
1292
|
|
|
PARSER.add_argument("output_file", |
1293
|
|
|
metavar="dest", |
1294
|
|
|
help="Destination file path.") |
1295
|
|
|
PARSER.add_argument("-tileorigin", |
1296
|
|
|
metavar="tile_origin", |
1297
|
|
|
help="Tile point of origin location. Valid options " + |
1298
|
|
|
"are ll, ul, nw, or sw.", |
1299
|
|
|
choices=["ll", "ul", "sw", "nw"], |
1300
|
|
|
default="ll") |
1301
|
|
|
PARSER.add_argument("-srs", |
1302
|
|
|
metavar="srs", |
1303
|
|
|
help="Spatial reference " + "system. Valid options are" |
1304
|
|
|
+ "3857, 4326, 3395, and 9804.", |
1305
|
|
|
type=int, |
1306
|
|
|
choices=[3857, 4326, 3395, 9804], |
1307
|
|
|
default=3857) |
1308
|
|
|
PARSER.add_argument("-imagery", |
1309
|
|
|
metavar="imagery", |
1310
|
|
|
help="Imagery type. Valid options are mixed, " + |
1311
|
|
|
"jpeg, png, or source.", |
1312
|
|
|
choices=["mixed", "jpeg", "png", "source"], |
1313
|
|
|
default="source") |
1314
|
|
|
PARSER.add_argument("-q", |
1315
|
|
|
metavar="quality", |
1316
|
|
|
type=int, |
1317
|
|
|
default=75, |
1318
|
|
|
help="Quality for jpeg images, 0-100. Default is 75", |
1319
|
|
|
choices=list(range(100))) |
1320
|
|
|
PARSER.add_argument("-a", |
1321
|
|
|
dest="append", |
1322
|
|
|
action="store_true", |
1323
|
|
|
default=False, |
1324
|
|
|
help="Append tile set to existing geopackage") |
1325
|
|
|
PARSER.add_argument("-T", |
1326
|
|
|
dest="threading", |
1327
|
|
|
action="store_false", |
1328
|
|
|
default=True, |
1329
|
|
|
help="Disable multiprocessing.") |
1330
|
|
|
ARG_LIST = PARSER.parse_args() |
1331
|
|
|
if not exists(ARG_LIST.source_folder) or exists(ARG_LIST.output_file): |
1332
|
|
|
PARSER.print_usage() |
1333
|
|
|
print("Ensure that TMS directory exists and out file does not.") |
1334
|
|
|
exit(1) |
1335
|
|
|
if ARG_LIST.q is not None and ARG_LIST.imagery == 'png': |
1336
|
|
|
PARSER.print_usage() |
1337
|
|
|
print("-q cannot be used with png") |
1338
|
|
|
exit(1) |
1339
|
|
|
main(ARG_LIST) |
1340
|
|
|
|