|
1
|
|
|
#!/usr/bin/python2.7 |
|
2
|
|
|
""" |
|
3
|
|
|
Copyright (C) 2014 Reinventing Geospatial, Inc. |
|
4
|
|
|
|
|
5
|
|
|
This program is free software: you can redistribute it and/or modify |
|
6
|
|
|
it under the terms of the GNU General Public License as published by |
|
7
|
|
|
the Free Software Foundation, either version 3 of the License, or |
|
8
|
|
|
(at your option) any later version. |
|
9
|
|
|
|
|
10
|
|
|
This program is distributed in the hope that it will be useful, |
|
11
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
12
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
13
|
|
|
GNU General Public License for more details. |
|
14
|
|
|
|
|
15
|
|
|
You should have received a copy of the GNU General Public License |
|
16
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>, |
|
17
|
|
|
or write to the Free Software Foundation, Inc., 59 Temple Place - |
|
18
|
|
|
Suite 330, Boston, MA 02111-1307, USA. |
|
19
|
|
|
|
|
20
|
|
|
Author: Steven D. Lander, Reinventing Geospatial Inc (RGi) |
|
21
|
|
|
Date: 2013-07-12 |
|
22
|
|
|
Requires: sqlite3, argparse |
|
23
|
|
|
Optional: Python Imaging Library (PIL or Pillow) |
|
24
|
|
|
Description: Converts a TMS folder into a geopackage with |
|
25
|
|
|
PNGs for images with transparency and JPEGs for those |
|
26
|
|
|
without. |
|
27
|
|
|
Credits: |
|
28
|
|
|
MapProxy imaging functions: http://mapproxy.org |
|
29
|
|
|
gdal2mb on github: https://github.com/developmentseed/gdal2mb |
|
30
|
|
|
|
|
31
|
|
|
Version: |
|
32
|
|
|
""" |
|
33
|
|
|
|
|
34
|
|
|
from glob import glob |
|
35
|
|
|
try: |
|
36
|
|
|
from cStringIO import StringIO as ioBuffer |
|
37
|
|
|
except ImportError: |
|
38
|
|
|
from io import BytesIO as ioBuffer |
|
39
|
|
|
from time import sleep |
|
40
|
|
|
from uuid import uuid4 |
|
41
|
|
|
from sys import stdout |
|
42
|
|
|
from sys import version_info |
|
43
|
|
|
if version_info[0] == 3: |
|
44
|
|
|
xrange = range |
|
45
|
|
|
from operator import attrgetter |
|
46
|
|
|
from sqlite3 import connect, Error |
|
47
|
|
|
from argparse import ArgumentParser |
|
48
|
|
|
from sqlite3 import Binary as sbinary |
|
49
|
|
|
from os import walk, remove |
|
50
|
|
|
from os.path import split, join, exists |
|
51
|
|
|
from multiprocessing import cpu_count, Pool |
|
52
|
|
|
from math import pi, sin, log, tan, atan, sinh, degrees |
|
53
|
|
|
try: |
|
54
|
|
|
from PIL.Image import open as IOPEN |
|
55
|
|
|
except ImportError: |
|
56
|
|
|
IOPEN = None |
|
57
|
|
|
|
|
58
|
|
|
# JPEGs @ 75% provide good quality images with low footprint, use as a default |
|
59
|
|
|
# PNGs should be used sparingly (mixed mode) due to their high disk usage RGBA |
|
60
|
|
|
# Options are mixed, jpeg, and png |
|
61
|
|
|
IMAGE_TYPES = '.png', '.jpeg', '.jpg' |
|
62
|
|
|
|
|
63
|
|
|
|
|
64
|
|
|
class Mercator(object): |
|
65
|
|
|
""" |
|
66
|
|
|
Mercator projection class that holds specific calculations and formulas |
|
67
|
|
|
for EPSG3857. |
|
68
|
|
|
""" |
|
69
|
|
|
|
|
70
|
|
|
def __init__(self, tile_size=256): |
|
71
|
|
|
""" |
|
72
|
|
|
Constructor |
|
73
|
|
|
""" |
|
74
|
|
|
self.tile_size = tile_size |
|
75
|
|
|
self.radius = 6378137 |
|
76
|
|
|
self.origin_shift = pi * self.radius |
|
77
|
|
|
self.initial_resolution = 2 * self.origin_shift / self.tile_size |
|
78
|
|
|
|
|
79
|
|
|
@staticmethod |
|
80
|
|
|
def invert_y(z, y): |
|
81
|
|
|
""" |
|
82
|
|
|
Inverts the Y tile value. |
|
83
|
|
|
|
|
84
|
|
|
Inputs: |
|
85
|
|
|
z -- the zoom level associated with the tile |
|
86
|
|
|
y -- the Y tile number |
|
87
|
|
|
|
|
88
|
|
|
Returns: |
|
89
|
|
|
The flipped tile value |
|
90
|
|
|
""" |
|
91
|
|
|
return (1 << z) - y - 1 |
|
92
|
|
|
|
|
93
|
|
|
@staticmethod |
|
94
|
|
|
def tile_to_lat_lon(z, x, y): |
|
95
|
|
|
""" |
|
96
|
|
|
Returns the lat/lon coordinates of the bottom-left corner of the input |
|
97
|
|
|
tile. |
|
98
|
|
|
|
|
99
|
|
|
Inputs: |
|
100
|
|
|
z -- zoom level value for input tile |
|
101
|
|
|
x -- tile column (longitude) value for input tile |
|
102
|
|
|
y -- tile row (latitude) value for input tile |
|
103
|
|
|
""" |
|
104
|
|
|
n = 2.0**z |
|
105
|
|
|
lon = x / n * 360.0 - 180.0 |
|
106
|
|
|
lat_rad = atan(sinh(pi * (2 * y / n - 1))) |
|
107
|
|
|
#lat_rad = math.atan(math.sinh(math.pi * (1 - 2 * y / n))) |
|
108
|
|
|
lat = degrees(lat_rad) |
|
109
|
|
|
return lat, lon |
|
110
|
|
|
|
|
111
|
|
|
def tile_to_meters(self, z, x, y): |
|
112
|
|
|
""" |
|
113
|
|
|
Returns the meter coordinates of the bottom-left corner of the input |
|
114
|
|
|
tile. |
|
115
|
|
|
|
|
116
|
|
|
Inputs: |
|
117
|
|
|
z -- zoom level value for input tile |
|
118
|
|
|
x -- tile column (longitude) value for input tile |
|
119
|
|
|
y -- tile row (latitude) value for input tile |
|
120
|
|
|
""" |
|
121
|
|
|
# Mercator Upper left, add 1 to both x and y to get Lower right |
|
122
|
|
|
lat, lon = self.tile_to_lat_lon(z, x, y) |
|
123
|
|
|
meters_x = lon * self.origin_shift / 180.0 |
|
124
|
|
|
meters_y = log(tan((90 + lat) * pi / 360.0)) / \ |
|
125
|
|
|
(pi / 180.0) |
|
126
|
|
|
meters_y = meters_y * self.origin_shift / 180.0 |
|
127
|
|
|
return meters_x, meters_y |
|
128
|
|
|
|
|
129
|
|
|
@staticmethod |
|
130
|
|
|
def pixel_size(z): |
|
131
|
|
|
""" |
|
132
|
|
|
Returns the pixel resolution of the input zoom level. |
|
133
|
|
|
|
|
134
|
|
|
Inputs: |
|
135
|
|
|
z -- zoom level value for the input tile |
|
136
|
|
|
""" |
|
137
|
|
|
return 156543.033928041 / 2**z |
|
138
|
|
|
|
|
139
|
|
|
def get_coord(self, z, x, y): |
|
140
|
|
|
""" |
|
141
|
|
|
Returns the coordinates (in meters) of the bottom-left corner of the |
|
142
|
|
|
input tile. |
|
143
|
|
|
|
|
144
|
|
|
Inputs: |
|
145
|
|
|
z -- zoom level value for input tile |
|
146
|
|
|
x -- tile column (longitude) value for input tile |
|
147
|
|
|
y -- tile row (latitude) value for input tile |
|
148
|
|
|
""" |
|
149
|
|
|
return self.tile_to_meters(z, x, y) |
|
150
|
|
|
|
|
151
|
|
|
@staticmethod |
|
152
|
|
|
def truncate(coord): |
|
153
|
|
|
""" |
|
154
|
|
|
Formats a coordinate to within an acceptable degree of accuracy (2 |
|
155
|
|
|
decimal places for mercator). |
|
156
|
|
|
""" |
|
157
|
|
|
return '%.2f' % (int(coord * 100) / float(100)) |
|
158
|
|
|
|
|
159
|
|
|
|
|
160
|
|
|
class Geodetic(object): |
|
161
|
|
|
""" |
|
162
|
|
|
Geodetic projection class that holds specific calculations and formulas for |
|
163
|
|
|
EPSG4326. |
|
164
|
|
|
""" |
|
165
|
|
|
|
|
166
|
|
|
def __init__(self, tile_size=256): |
|
167
|
|
|
""" |
|
168
|
|
|
Constructor |
|
169
|
|
|
""" |
|
170
|
|
|
self.tile_size = tile_size |
|
171
|
|
|
self.resolution_factor = 360.0 / self.tile_size |
|
172
|
|
|
|
|
173
|
|
|
def pixel_size(self, zoom): |
|
174
|
|
|
""" |
|
175
|
|
|
Return the size of a pixel in lat/long at the given zoom level |
|
176
|
|
|
|
|
177
|
|
|
z -- zoom level of the tile |
|
178
|
|
|
""" |
|
179
|
|
|
return self.resolution_factor / 2**zoom |
|
180
|
|
|
|
|
181
|
|
|
def get_coord(self, z, x, y): |
|
182
|
|
|
""" |
|
183
|
|
|
Return the coordinates (in lat/long) of the bottom left corner of |
|
184
|
|
|
the tile |
|
185
|
|
|
|
|
186
|
|
|
z -- zoom level for input tile |
|
187
|
|
|
x -- tile column |
|
188
|
|
|
y -- tile row |
|
189
|
|
|
""" |
|
190
|
|
|
res = self.resolution_factor / 2**z |
|
191
|
|
|
return x * self.tile_size * res - 180, y * self.tile_size * res - 90 |
|
192
|
|
|
|
|
193
|
|
|
@staticmethod |
|
194
|
|
|
def invert_y(z, y): |
|
195
|
|
|
""" |
|
196
|
|
|
Return the inverted Y value of the tile |
|
197
|
|
|
|
|
198
|
|
|
z -- zoom level |
|
199
|
|
|
""" |
|
200
|
|
|
if z == 0: |
|
201
|
|
|
return 0 |
|
202
|
|
|
else: |
|
203
|
|
|
return (1 << (z - 1)) - y - 1 |
|
204
|
|
|
|
|
205
|
|
|
@staticmethod |
|
206
|
|
|
def truncate(coord): |
|
207
|
|
|
""" |
|
208
|
|
|
Formats a coordinate to an acceptable degree of accuracy (7 decimal |
|
209
|
|
|
places for Geodetic). |
|
210
|
|
|
""" |
|
211
|
|
|
return '%.7f' % (int(coord * 10000000) / float(10000000)) |
|
212
|
|
|
|
|
213
|
|
|
|
|
214
|
|
View Code Duplication |
class EllipsoidalMercator(Mercator): |
|
|
|
|
|
|
215
|
|
|
""" |
|
216
|
|
|
Ellipsoidal Mercator projection class that holds specific calculations and |
|
217
|
|
|
formulas for EPSG3395. |
|
218
|
|
|
""" |
|
219
|
|
|
|
|
220
|
|
|
def __init__(self): |
|
221
|
|
|
""" |
|
222
|
|
|
Constructor |
|
223
|
|
|
""" |
|
224
|
|
|
super(EllipsoidalMercator, self).__init__() |
|
225
|
|
|
|
|
226
|
|
|
@staticmethod |
|
227
|
|
|
def lat_to_northing(lat): |
|
228
|
|
|
""" |
|
229
|
|
|
Convert a latitude to a northing |
|
230
|
|
|
/ / pi phi \ / 1 - e sin(phi) \ e/2 \ |
|
231
|
|
|
y(phi) = R ln| tan| --- + --- | | -------------- | | |
|
232
|
|
|
\ \ 4 2 / \ 1 + e sin(phi) / / |
|
233
|
|
|
""" |
|
234
|
|
|
r = 6378137.0 |
|
235
|
|
|
e = 0.081819190842621 |
|
236
|
|
|
return r * log(tan((pi / 2 + lat) / 2) * ((1 - e * sin(lat)) / |
|
237
|
|
|
(1 + e * sin(lat)))**(e / 2)) |
|
238
|
|
|
|
|
239
|
|
|
@staticmethod |
|
240
|
|
|
def tile_to_lat_lon(z, x, y): |
|
241
|
|
|
""" |
|
242
|
|
|
Returns the lat/lon coordinates of the bottom-left corner of the input |
|
243
|
|
|
tile. Finds the value numerically (using the secant method). |
|
244
|
|
|
|
|
245
|
|
|
Inputs: |
|
246
|
|
|
z -- zoom level value for input tile |
|
247
|
|
|
x -- tile column value for input tile |
|
248
|
|
|
y -- tile row value for input tile |
|
249
|
|
|
""" |
|
250
|
|
|
n = 2.0**z |
|
251
|
|
|
lon = x / n * 360.0 - 180.0 |
|
252
|
|
|
my = (y - 2**(z - 1)) * 6378137 * pi * 2 / 2**z |
|
253
|
|
|
|
|
254
|
|
|
def f(phi): |
|
255
|
|
|
return EllipsoidalMercator.lat_to_northing(phi) - my |
|
256
|
|
|
|
|
257
|
|
|
lat = 0.0 |
|
258
|
|
|
oldLat = 1.0 |
|
259
|
|
|
diff = 1.0 |
|
260
|
|
|
while abs(diff) > 0.0001: |
|
261
|
|
|
newLat = lat - f(lat) * (lat - oldLat) / (f(lat) - f(oldLat)) |
|
262
|
|
|
if newLat > 1.48499697138: |
|
263
|
|
|
newLat = 1.48499697138 |
|
264
|
|
|
elif newLat < -1.48499697138: |
|
265
|
|
|
newLat = -1.48499697138 |
|
266
|
|
|
oldLat = lat |
|
267
|
|
|
lat = newLat |
|
268
|
|
|
diff = lat - oldLat |
|
269
|
|
|
lat = lat * 180.0 / pi |
|
270
|
|
|
return lat, lon |
|
271
|
|
|
|
|
272
|
|
|
def tile_to_meters(self, z, x, y): |
|
273
|
|
|
""" |
|
274
|
|
|
Returns the meter coordinates of the bottom-left corner of the input |
|
275
|
|
|
tile. |
|
276
|
|
|
|
|
277
|
|
|
Inputs: |
|
278
|
|
|
z -- zoom level value for input tile |
|
279
|
|
|
x -- tile column (longitude) value for input tile |
|
280
|
|
|
y -- tile row (latitude) value for input tile |
|
281
|
|
|
""" |
|
282
|
|
|
lat, lon = self.tile_to_lat_lon(z, x, y) |
|
283
|
|
|
meters_x = lon * self.origin_shift / 180.0 |
|
284
|
|
|
meters_y = self.lat_to_northing(lat * pi / 180.0) |
|
285
|
|
|
return meters_x, meters_y |
|
286
|
|
|
|
|
287
|
|
|
|
|
288
|
|
View Code Duplication |
class ScaledWorldMercator(EllipsoidalMercator): |
|
|
|
|
|
|
289
|
|
|
""" |
|
290
|
|
|
Scaled World Mercator projection class that holds specific calculations |
|
291
|
|
|
and formulas for EPSG9804/9805 projection proposed by NGA Craig Rollins. |
|
292
|
|
|
""" |
|
293
|
|
|
|
|
294
|
|
|
def __init__(self): |
|
295
|
|
|
""" |
|
296
|
|
|
Constructor |
|
297
|
|
|
""" |
|
298
|
|
|
super(ScaledWorldMercator, self).__init__() |
|
299
|
|
|
|
|
300
|
|
|
@staticmethod |
|
301
|
|
|
def pixel_size(z): |
|
302
|
|
|
""" |
|
303
|
|
|
Calculates the pixel size for a given zoom level. |
|
304
|
|
|
""" |
|
305
|
|
|
return 125829.12 / 2**z |
|
306
|
|
|
|
|
307
|
|
|
@staticmethod |
|
308
|
|
|
def lat_to_northing(lat): |
|
309
|
|
|
""" |
|
310
|
|
|
Convert a latitude to a northing |
|
311
|
|
|
/ / pi phi \ / 1 - e sin(phi) \ e/2 \ |
|
312
|
|
|
y(phi) = R ln| tan| --- + --- | | -------------- | | |
|
313
|
|
|
\ \ 4 2 / \ 1 + e sin(phi) / / |
|
314
|
|
|
""" |
|
315
|
|
|
r = 6378137.0 * 0.857385503731176 |
|
316
|
|
|
e = 0.081819190842621 |
|
317
|
|
|
return r * log(tan((pi / 2 + lat) / 2) * ((1 - e * sin(lat)) / |
|
318
|
|
|
(1 + e * sin(lat)))**(e / 2)) |
|
319
|
|
|
|
|
320
|
|
|
@staticmethod |
|
321
|
|
|
def tile_to_lat_lon(z, x, y): |
|
322
|
|
|
""" |
|
323
|
|
|
Returns the lat/lon coordinates of the bottom-left corner of the input |
|
324
|
|
|
tile. Finds the value numerically (using the secant method). A scale |
|
325
|
|
|
factor has been added specifically for scaled world mercator. |
|
326
|
|
|
|
|
327
|
|
|
Inputs: |
|
328
|
|
|
z -- zoom level value for input tile |
|
329
|
|
|
x -- tile column value for input tile |
|
330
|
|
|
y -- tile row value for input tile |
|
331
|
|
|
""" |
|
332
|
|
|
n = 2.0**z |
|
333
|
|
|
r = 6378137.0 * 0.857385503731176 |
|
334
|
|
|
lon = x / n * 360.0 - 180.0 |
|
335
|
|
|
my = (y - 2**(z - 1)) * r * pi * 2 / 2**z |
|
336
|
|
|
|
|
337
|
|
|
def f(phi): |
|
338
|
|
|
return ScaledWorldMercator.lat_to_northing(phi) - my |
|
339
|
|
|
|
|
340
|
|
|
lat = 0.0 |
|
341
|
|
|
oldLat = 1.0 |
|
342
|
|
|
diff = 1.0 |
|
343
|
|
|
while abs(diff) > 0.0001: |
|
344
|
|
|
newLat = lat - f(lat) * (lat - oldLat) / (f(lat) - f(oldLat)) |
|
345
|
|
|
if newLat > 1.4849969713855238: |
|
346
|
|
|
newLat = 1.4849969713855238 |
|
347
|
|
|
elif newLat < -1.4849969713855238: |
|
348
|
|
|
newLat = -1.4849969713855238 |
|
349
|
|
|
oldLat = lat |
|
350
|
|
|
lat = newLat |
|
351
|
|
|
diff = lat - oldLat |
|
352
|
|
|
lat = lat * 180.0 / pi |
|
353
|
|
|
return lat, lon |
|
354
|
|
|
|
|
355
|
|
|
def tile_to_meters(self, z, x, y): |
|
356
|
|
|
""" |
|
357
|
|
|
Returns the meter coordinates of the bottom-left corner of the input |
|
358
|
|
|
tile. A scale factor has been added to the longitude meters |
|
359
|
|
|
calculation. |
|
360
|
|
|
|
|
361
|
|
|
Inputs: |
|
362
|
|
|
z -- zoom level value for input tile |
|
363
|
|
|
x -- tile column (longitude) value for input tile |
|
364
|
|
|
y -- tile row (latitude) value for input tile |
|
365
|
|
|
""" |
|
366
|
|
|
lat, lon = self.tile_to_lat_lon(z, x, y) |
|
367
|
|
|
meters_x = lon * (pi * (6378137.0 * 0.857385503731176)) / 180.0 |
|
368
|
|
|
meters_y = self.lat_to_northing(lat * pi / 180.0) |
|
369
|
|
|
# Instituting a 2 decimal place round to ensure accuracy |
|
370
|
|
|
return meters_x, round(meters_y, 2) |
|
371
|
|
|
|
|
372
|
|
|
|
|
373
|
|
|
class ZoomMetadata(object): |
|
374
|
|
|
"""Return an object containing metadata about a given zoom level.""" |
|
375
|
|
|
|
|
376
|
|
|
@property |
|
377
|
|
|
def zoom(self): |
|
378
|
|
|
"""Return the zoom level of this metadata object.""" |
|
379
|
|
|
return self.__zoom |
|
380
|
|
|
|
|
381
|
|
|
@zoom.setter |
|
382
|
|
|
def zoom(self, value): |
|
383
|
|
|
"""Set the zoom level of this metadata object.""" |
|
384
|
|
|
self.__zoom = value |
|
385
|
|
|
|
|
386
|
|
|
@property |
|
387
|
|
|
def min_tile_col(self): |
|
388
|
|
|
"""Return the minimum tile column of this metadata object.""" |
|
389
|
|
|
return self.__min_tile_col |
|
390
|
|
|
|
|
391
|
|
|
@min_tile_col.setter |
|
392
|
|
|
def min_tile_col(self, value): |
|
393
|
|
|
"""Set the minimum tile column of this metadata object.""" |
|
394
|
|
|
self.__min_tile_col = value |
|
395
|
|
|
|
|
396
|
|
|
@property |
|
397
|
|
|
def max_tile_col(self): |
|
398
|
|
|
"""Return the maximum tile column of this metadata object.""" |
|
399
|
|
|
return self.__max_tile_col |
|
400
|
|
|
|
|
401
|
|
|
@max_tile_col.setter |
|
402
|
|
|
def max_tile_col(self, value): |
|
403
|
|
|
"""Set the maximum tile column of this metadata object.""" |
|
404
|
|
|
self.__max_tile_col = value |
|
405
|
|
|
|
|
406
|
|
|
@property |
|
407
|
|
|
def min_tile_row(self): |
|
408
|
|
|
"""Return the minimum tile row of this metadata object.""" |
|
409
|
|
|
return self.__min_tile_row |
|
410
|
|
|
|
|
411
|
|
|
@min_tile_row.setter |
|
412
|
|
|
def min_tile_row(self, value): |
|
413
|
|
|
"""Set the minimum tile row of this metadata object.""" |
|
414
|
|
|
self.__min_tile_row = value |
|
415
|
|
|
|
|
416
|
|
|
@property |
|
417
|
|
|
def max_tile_row(self): |
|
418
|
|
|
"""Return the maximum tile row of this metadata object.""" |
|
419
|
|
|
return self.__max_tile_row |
|
420
|
|
|
|
|
421
|
|
|
@max_tile_row.setter |
|
422
|
|
|
def max_tile_row(self, value): |
|
423
|
|
|
"""Set the maximum tile row of this metadata object.""" |
|
424
|
|
|
self.__max_tile_row = value |
|
425
|
|
|
|
|
426
|
|
|
@property |
|
427
|
|
|
def min_x(self): |
|
428
|
|
|
"""Return the minimum x coordinate of the bounding box.""" |
|
429
|
|
|
return self.__min_x |
|
430
|
|
|
|
|
431
|
|
|
@min_x.setter |
|
432
|
|
|
def min_x(self, value): |
|
433
|
|
|
"""Set the minimum x coordinate of the bounding box.""" |
|
434
|
|
|
self.__min_x = value |
|
435
|
|
|
|
|
436
|
|
|
@property |
|
437
|
|
|
def max_x(self): |
|
438
|
|
|
"""Return the maximum x coordinate of the bounding box.""" |
|
439
|
|
|
return self.__max_x |
|
440
|
|
|
|
|
441
|
|
|
@max_x.setter |
|
442
|
|
|
def max_x(self, value): |
|
443
|
|
|
"""Set the maximum x coordinate of the bounding box.""" |
|
444
|
|
|
self.__max_x = value |
|
445
|
|
|
|
|
446
|
|
|
@property |
|
447
|
|
|
def min_y(self): |
|
448
|
|
|
"""Return the minimum y coordinate of the bounding box.""" |
|
449
|
|
|
return self.__min_y |
|
450
|
|
|
|
|
451
|
|
|
@min_y.setter |
|
452
|
|
|
def min_y(self, value): |
|
453
|
|
|
"""Set the minimum y coordinate of the bounding box.""" |
|
454
|
|
|
self.__min_y = value |
|
455
|
|
|
|
|
456
|
|
|
@property |
|
457
|
|
|
def max_y(self): |
|
458
|
|
|
"""Return the maximum y coordinate of the bounding box.""" |
|
459
|
|
|
return self.__max_y |
|
460
|
|
|
|
|
461
|
|
|
@max_y.setter |
|
462
|
|
|
def max_y(self, value): |
|
463
|
|
|
"""Set the maximum y coordinate of the bounding box.""" |
|
464
|
|
|
self.__max_y = value |
|
465
|
|
|
|
|
466
|
|
|
@property |
|
467
|
|
|
def matrix_width(self): |
|
468
|
|
|
"""Number of tiles wide this matrix should be.""" |
|
469
|
|
|
#return (self.__matrix_width if hasattr(self, 'matrix_width') else None) |
|
470
|
|
|
return self.__matrix_width or None |
|
471
|
|
|
|
|
472
|
|
|
@matrix_width.setter |
|
473
|
|
|
def matrix_width(self, value): |
|
474
|
|
|
"""Set the number of tiles wide this matrix should be.""" |
|
475
|
|
|
self.__matrix_width = value |
|
476
|
|
|
|
|
477
|
|
|
@property |
|
478
|
|
|
def matrix_height(self): |
|
479
|
|
|
"""Number of tiles high this matrix should be.""" |
|
480
|
|
|
return self.__matrix_height or None |
|
481
|
|
|
|
|
482
|
|
|
@matrix_height.setter |
|
483
|
|
|
def matrix_height(self, value): |
|
484
|
|
|
"""Set the number of tiles high this matrix should be.""" |
|
485
|
|
|
self.__matrix_height = value |
|
486
|
|
|
|
|
487
|
|
|
|
|
488
|
|
|
class Geopackage(object): |
|
489
|
|
|
"""Object representing a GeoPackage container.""" |
|
490
|
|
|
|
|
491
|
|
|
def __enter__(self): |
|
492
|
|
|
"""With-statement caller""" |
|
493
|
|
|
return self |
|
494
|
|
|
|
|
495
|
|
|
def __init__(self, file_path, srs): |
|
496
|
|
|
"""Constructor.""" |
|
497
|
|
|
self.__file_path = file_path |
|
498
|
|
|
self.__srs = srs |
|
499
|
|
|
if self.__srs == 3857: |
|
500
|
|
|
self.__projection = Mercator() |
|
501
|
|
|
elif self.__srs == 3395: |
|
502
|
|
|
self.__projection = EllipsoidalMercator() |
|
503
|
|
|
elif self.__srs == 9804: |
|
504
|
|
|
self.__projection = ScaledWorldMercator() |
|
505
|
|
|
else: |
|
506
|
|
|
self.__projection = Geodetic() |
|
507
|
|
|
self.__db_con = connect(self.__file_path) |
|
508
|
|
|
self.__create_schema() |
|
509
|
|
|
|
|
510
|
|
|
def __create_schema(self): |
|
511
|
|
|
"""Create default geopackage schema on the database.""" |
|
512
|
|
|
with self.__db_con as db_con: |
|
513
|
|
|
cursor = db_con.cursor() |
|
514
|
|
|
cursor.execute(""" |
|
515
|
|
|
CREATE TABLE gpkg_contents ( |
|
516
|
|
|
table_name TEXT NOT NULL PRIMARY KEY, |
|
517
|
|
|
data_type TEXT NOT NULL, |
|
518
|
|
|
identifier TEXT UNIQUE, |
|
519
|
|
|
description TEXT DEFAULT '', |
|
520
|
|
|
last_change DATETIME NOT NULL DEFAULT |
|
521
|
|
|
(strftime('%Y-%m-%dT%H:%M:%fZ','now')), |
|
522
|
|
|
min_x DOUBLE, |
|
523
|
|
|
min_y DOUBLE, |
|
524
|
|
|
max_x DOUBLE, |
|
525
|
|
|
max_y DOUBLE, |
|
526
|
|
|
srs_id INTEGER, |
|
527
|
|
|
CONSTRAINT fk_gc_r_srs_id FOREIGN KEY (srs_id) |
|
528
|
|
|
REFERENCES gpkg_spatial_ref_sys(srs_id)); |
|
529
|
|
|
""") |
|
530
|
|
|
cursor.execute(""" |
|
531
|
|
|
CREATE TABLE gpkg_spatial_ref_sys ( |
|
532
|
|
|
srs_name TEXT NOT NULL, |
|
533
|
|
|
srs_id INTEGER NOT NULL PRIMARY KEY, |
|
534
|
|
|
organization TEXT NOT NULL, |
|
535
|
|
|
organization_coordsys_id INTEGER NOT NULL, |
|
536
|
|
|
definition TEXT NOT NULL, |
|
537
|
|
|
description TEXT); |
|
538
|
|
|
""") |
|
539
|
|
|
cursor.execute(""" |
|
540
|
|
|
CREATE TABLE gpkg_tile_matrix ( |
|
541
|
|
|
table_name TEXT NOT NULL, |
|
542
|
|
|
zoom_level INTEGER NOT NULL, |
|
543
|
|
|
matrix_width INTEGER NOT NULL, |
|
544
|
|
|
matrix_height INTEGER NOT NULL, |
|
545
|
|
|
tile_width INTEGER NOT NULL, |
|
546
|
|
|
tile_height INTEGER NOT NULL, |
|
547
|
|
|
pixel_x_size DOUBLE NOT NULL, |
|
548
|
|
|
pixel_y_size DOUBLE NOT NULL, |
|
549
|
|
|
CONSTRAINT pk_ttm PRIMARY KEY (table_name, zoom_level), |
|
550
|
|
|
CONSTRAINT fk_ttm_table_name FOREIGN KEY (table_name) |
|
551
|
|
|
REFERENCES gpkg_contents(table_name)); |
|
552
|
|
|
""") |
|
553
|
|
|
cursor.execute(""" |
|
554
|
|
|
CREATE TABLE gpkg_tile_matrix_set ( |
|
555
|
|
|
table_name TEXT NOT NULL PRIMARY KEY, |
|
556
|
|
|
srs_id INTEGER NOT NULL, |
|
557
|
|
|
min_x DOUBLE NOT NULL, |
|
558
|
|
|
min_y DOUBLE NOT NULL, |
|
559
|
|
|
max_x DOUBLE NOT NULL, |
|
560
|
|
|
max_y DOUBLE NOT NULL, |
|
561
|
|
|
CONSTRAINT fk_gtms_table_name FOREIGN KEY (table_name) |
|
562
|
|
|
REFERENCES gpkg_contents(table_name), |
|
563
|
|
|
CONSTRAINT fk_gtms_srs FOREIGN KEY (srs_id) |
|
564
|
|
|
REFERENCES gpkg_spatial_ref_sys(srs_id)); |
|
565
|
|
|
""") |
|
566
|
|
|
cursor.execute(""" |
|
567
|
|
|
CREATE TABLE tiles ( |
|
568
|
|
|
id INTEGER PRIMARY KEY AUTOINCREMENT, |
|
569
|
|
|
zoom_level INTEGER NOT NULL, |
|
570
|
|
|
tile_column INTEGER NOT NULL, |
|
571
|
|
|
tile_row INTEGER NOT NULL, |
|
572
|
|
|
tile_data BLOB NOT NULL, |
|
573
|
|
|
UNIQUE (zoom_level, tile_column, tile_row)); |
|
574
|
|
|
""") |
|
575
|
|
|
cursor.execute("pragma foreign_keys = 1;") |
|
576
|
|
|
# Insert EPSG values for tiles table |
|
577
|
|
|
wkt = """ |
|
578
|
|
|
PROJCS["WGS 84 / Pseudo-Mercator",GEOGCS["WGS 84",DATUM["WGS_1984" |
|
579
|
|
|
,SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]] |
|
580
|
|
|
,AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG", |
|
581
|
|
|
"8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]] |
|
582
|
|
|
,AUTHORITY["EPSG","9122"]]AUTHORITY["EPSG","4326"]],PROJECTION[ |
|
583
|
|
|
"Mercator_1SP"],PARAMETER["central_meridian",0],PARAMETER[ |
|
584
|
|
|
"scale_factor",1],PARAMETER["false_easting",0],PARAMETER[ |
|
585
|
|
|
"false_northing",0],UNIT["metre",1,AUTHORITY["EPSG","9001"]],AXIS[ |
|
586
|
|
|
"X",EAST],AXIS["Y",NORTH] |
|
587
|
|
|
""" |
|
588
|
|
|
|
|
589
|
|
|
cursor.execute(""" |
|
590
|
|
|
INSERT INTO gpkg_spatial_ref_sys ( |
|
591
|
|
|
srs_id, |
|
592
|
|
|
organization, |
|
593
|
|
|
organization_coordsys_id, |
|
594
|
|
|
srs_name, |
|
595
|
|
|
definition) |
|
596
|
|
|
VALUES (3857, ?, 3857, ?, ?) |
|
597
|
|
|
""", ("epsg", "WGS 84 / Pseudo-Mercator", wkt)) |
|
598
|
|
|
wkt = """ |
|
599
|
|
|
GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137, |
|
600
|
|
|
298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG", |
|
601
|
|
|
"6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT |
|
602
|
|
|
["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]], |
|
603
|
|
|
AUTHORITY["EPSG","4326"]] |
|
604
|
|
|
""" |
|
605
|
|
|
|
|
606
|
|
|
cursor.execute(""" |
|
607
|
|
|
INSERT INTO gpkg_spatial_ref_sys ( |
|
608
|
|
|
srs_id, |
|
609
|
|
|
organization, |
|
610
|
|
|
organization_coordsys_id, |
|
611
|
|
|
srs_name, |
|
612
|
|
|
definition) |
|
613
|
|
|
VALUES (4326, ?, 4326, ?, ?) |
|
614
|
|
|
""", ("epsg", "WGS 84", wkt)) |
|
615
|
|
|
wkt = """ |
|
616
|
|
|
PROJCS["WGS 84 / World Mercator",GEOGCS["WGS 84", |
|
617
|
|
|
DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563, |
|
618
|
|
|
AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]], |
|
619
|
|
|
PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]], |
|
620
|
|
|
UNIT["degree",0.01745329251994328,AUTHORITY["EPSG","9122"]], |
|
621
|
|
|
AUTHORITY["EPSG","4326"]],UNIT["metre",1,AUTHORITY["EPSG","9001"]], |
|
622
|
|
|
PROJECTION["Mercator_1SP"],PARAMETER["central_meridian",0], |
|
623
|
|
|
PARAMETER["scale_factor",1],PARAMETER["false_easting",0], |
|
624
|
|
|
PARAMETER["false_northing",0],AUTHORITY["EPSG","3395"], |
|
625
|
|
|
AXIS["Easting",EAST],AXIS["Northing",NORTH]] |
|
626
|
|
|
""" |
|
627
|
|
|
|
|
628
|
|
|
cursor.execute(""" |
|
629
|
|
|
INSERT INTO gpkg_spatial_ref_sys ( |
|
630
|
|
|
srs_id, |
|
631
|
|
|
organization, |
|
632
|
|
|
organization_coordsys_id, |
|
633
|
|
|
srs_name, |
|
634
|
|
|
definition) |
|
635
|
|
|
VALUES (3395, ?, 3395, ?, ?) |
|
636
|
|
|
""", ("epsg", "WGS 84 / World Mercator", wkt)) |
|
637
|
|
|
wkt = """ |
|
638
|
|
|
PROJCS["unnamed",GEOGCS["WGS 84", |
|
639
|
|
|
DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563, |
|
640
|
|
|
AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]], |
|
641
|
|
|
PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433], |
|
642
|
|
|
AUTHORITY["EPSG","4326"]],PROJECTION["Mercator_1SP"], |
|
643
|
|
|
PARAMETER["central_meridian",0], |
|
644
|
|
|
PARAMETER["scale_factor",0.803798909747978], |
|
645
|
|
|
PARAMETER["false_easting",0], |
|
646
|
|
|
PARAMETER["false_northing",0], |
|
647
|
|
|
UNIT["metre",1,AUTHORITY["EPSG","9001"]]] |
|
648
|
|
|
""" |
|
649
|
|
|
|
|
650
|
|
|
cursor.execute(""" |
|
651
|
|
|
INSERT INTO gpkg_spatial_ref_sys ( |
|
652
|
|
|
srs_id, |
|
653
|
|
|
organization, |
|
654
|
|
|
organization_coordsys_id, |
|
655
|
|
|
srs_name, |
|
656
|
|
|
definition) |
|
657
|
|
|
VALUES (9804, ?, 9804, ?, ?) |
|
658
|
|
|
""", ("epsg", "WGS 84 / Scaled World Mercator", wkt)) |
|
659
|
|
|
wkt = """undefined""" |
|
660
|
|
|
cursor.execute(""" |
|
661
|
|
|
INSERT INTO gpkg_spatial_ref_sys ( |
|
662
|
|
|
srs_id, |
|
663
|
|
|
organization, |
|
664
|
|
|
organization_coordsys_id, |
|
665
|
|
|
srs_name, |
|
666
|
|
|
definition) |
|
667
|
|
|
VALUES (-1, ?, -1, ?, ?) |
|
668
|
|
|
""", ("NONE", " ", wkt)) |
|
669
|
|
|
cursor.execute(""" |
|
670
|
|
|
INSERT INTO gpkg_spatial_ref_sys ( |
|
671
|
|
|
srs_id, |
|
672
|
|
|
organization, |
|
673
|
|
|
organization_coordsys_id, |
|
674
|
|
|
srs_name, |
|
675
|
|
|
definition) |
|
676
|
|
|
VALUES (0, ?, 0, ?, ?) |
|
677
|
|
|
""", ("NONE", " ", wkt)) |
|
678
|
|
|
cursor.execute(""" |
|
679
|
|
|
INSERT INTO gpkg_contents ( |
|
680
|
|
|
table_name, |
|
681
|
|
|
data_type, |
|
682
|
|
|
identifier, |
|
683
|
|
|
description, |
|
684
|
|
|
min_x, |
|
685
|
|
|
max_x, |
|
686
|
|
|
min_y, |
|
687
|
|
|
max_y, |
|
688
|
|
|
srs_id) |
|
689
|
|
|
VALUES (?, ?, ?, ?, 0, 0, 0, 0, ?); |
|
690
|
|
|
""", ("tiles", "tiles", "Raster Tiles", |
|
691
|
|
|
"Created by tiles2gpkg_parallel.py, written by S. Lander", |
|
692
|
|
|
self.__srs)) |
|
693
|
|
|
# Add GP10 to the Sqlite header |
|
694
|
|
|
cursor.execute("pragma application_id = 1196437808;") |
|
695
|
|
|
|
|
696
|
|
|
@property |
|
697
|
|
|
def file_path(self): |
|
698
|
|
|
"""Return the path of the geopackage database on the file system.""" |
|
699
|
|
|
return self.__file_path |
|
700
|
|
|
|
|
701
|
|
|
def update_metadata(self, metadata): |
|
702
|
|
|
"""Update the metadata of the geopackage database after tile merge.""" |
|
703
|
|
|
# initialize a new projection |
|
704
|
|
|
with self.__db_con as db_con: |
|
705
|
|
|
cursor = db_con.cursor() |
|
706
|
|
|
tile_matrix_stmt = """ |
|
707
|
|
|
INSERT OR REPLACE INTO gpkg_tile_matrix ( |
|
708
|
|
|
table_name, |
|
709
|
|
|
zoom_level, |
|
710
|
|
|
matrix_width, |
|
711
|
|
|
matrix_height, |
|
712
|
|
|
tile_width, |
|
713
|
|
|
tile_height, |
|
714
|
|
|
pixel_x_size, |
|
715
|
|
|
pixel_y_size) |
|
716
|
|
|
VALUES (?, ?, ?, ?, ?, ?, ?, ?); |
|
717
|
|
|
""" |
|
718
|
|
|
|
|
719
|
|
|
# iterate through each zoom level object and assign |
|
720
|
|
|
# matrix data to table |
|
721
|
|
|
for level in metadata: |
|
722
|
|
|
cursor.execute( |
|
723
|
|
|
tile_matrix_stmt, |
|
724
|
|
|
("tiles", level.zoom, level.matrix_width, |
|
725
|
|
|
level.matrix_height, self.__projection.tile_size, |
|
726
|
|
|
self.__projection.tile_size, |
|
727
|
|
|
self.__projection.pixel_size(level.zoom), |
|
728
|
|
|
self.__projection.pixel_size(level.zoom))) |
|
729
|
|
|
contents_stmt = """ |
|
730
|
|
|
UPDATE gpkg_contents SET |
|
731
|
|
|
min_x = ?, |
|
732
|
|
|
min_y = ?, |
|
733
|
|
|
max_x = ?, |
|
734
|
|
|
max_y = ? |
|
735
|
|
|
WHERE table_name = 'tiles'; |
|
736
|
|
|
""" |
|
737
|
|
|
|
|
738
|
|
|
tile_matrix_set_stmt = """ |
|
739
|
|
|
INSERT OR REPLACE INTO gpkg_tile_matrix_set ( |
|
740
|
|
|
table_name, |
|
741
|
|
|
srs_id, |
|
742
|
|
|
min_x, |
|
743
|
|
|
min_y, |
|
744
|
|
|
max_x, |
|
745
|
|
|
max_y) |
|
746
|
|
|
VALUES (?, ?, ?, ?, ?, ?); |
|
747
|
|
|
""" |
|
748
|
|
|
|
|
749
|
|
|
# get bounding box info based on |
|
750
|
|
|
top_level = min(metadata, key=attrgetter('zoom')) |
|
751
|
|
|
#top_level.min_x = self.__projection.truncate(top_level.min_x) |
|
752
|
|
|
#top_level.min_y = self.__projection.truncate(top_level.min_y) |
|
753
|
|
|
#top_level.max_x = self.__projection.truncate(top_level.max_x) |
|
754
|
|
|
#top_level.max_y = self.__projection.truncate(top_level.max_y) |
|
755
|
|
|
top_level.min_x = top_level.min_x |
|
756
|
|
|
top_level.min_y = top_level.min_y |
|
757
|
|
|
top_level.max_x = top_level.max_x |
|
758
|
|
|
top_level.max_y = top_level.max_y |
|
759
|
|
|
# write bounds and matrix set info to table |
|
760
|
|
|
cursor.execute(contents_stmt, (top_level.min_x, top_level.min_y, |
|
761
|
|
|
top_level.max_x, top_level.max_y)) |
|
762
|
|
|
cursor.execute(tile_matrix_set_stmt, |
|
763
|
|
|
('tiles', self.__srs, top_level.min_x, |
|
764
|
|
|
top_level.min_y, top_level.max_x, top_level.max_y)) |
|
765
|
|
|
|
|
766
|
|
|
def execute(self, statement, inputs=None): |
|
767
|
|
|
"""Execute a prepared SQL statement on this geopackage database.""" |
|
768
|
|
|
with self.__db_con as db_con: |
|
769
|
|
|
cursor = db_con.cursor() |
|
770
|
|
|
if inputs is not None: |
|
771
|
|
|
result_cursor = cursor.execute(statement, inputs) |
|
772
|
|
|
else: |
|
773
|
|
|
result_cursor = cursor.execute(statement) |
|
774
|
|
|
return result_cursor |
|
775
|
|
|
|
|
776
|
|
|
def assimilate(self, source): |
|
777
|
|
|
"""Assimilate .gpkg.part tiles into this geopackage database.""" |
|
778
|
|
|
if not exists(source): |
|
779
|
|
|
raise IOError |
|
780
|
|
|
with self.__db_con as db_con: |
|
781
|
|
|
cursor = db_con.cursor() |
|
782
|
|
|
cursor.execute("pragma synchronous = off;") |
|
783
|
|
|
cursor.execute("pragma journal_mode = off;") |
|
784
|
|
|
cursor.execute("pragma page_size = 65536;") |
|
785
|
|
|
#print "Merging", source, "into", self.__file_path, "..." |
|
786
|
|
|
query = "attach '" + source + "' as source;" |
|
787
|
|
|
cursor.execute(query) |
|
788
|
|
|
try: |
|
789
|
|
|
cursor.execute("""INSERT OR REPLACE INTO tiles |
|
790
|
|
|
(zoom_level, tile_column, tile_row, tile_data) |
|
791
|
|
|
SELECT zoom_level, tile_column, tile_row, tile_data |
|
792
|
|
|
FROM source.tiles;""") |
|
793
|
|
|
cursor.execute("detach source;") |
|
794
|
|
|
except Error as err: |
|
795
|
|
|
print("Error: {}".format(type(err))) |
|
796
|
|
|
print("Error msg:".format(err)) |
|
797
|
|
|
raise |
|
798
|
|
|
remove(source) |
|
799
|
|
|
|
|
800
|
|
|
def __exit__(self, type, value, traceback): |
|
801
|
|
|
"""Resource cleanup on destruction.""" |
|
802
|
|
|
self.__db_con.close() |
|
803
|
|
|
|
|
804
|
|
|
|
|
805
|
|
|
class TempDB(object): |
|
806
|
|
|
""" |
|
807
|
|
|
Returns a temporary sqlite database to hold tiles for async workers. |
|
808
|
|
|
Has a <filename>.gpkg.part file format. |
|
809
|
|
|
""" |
|
810
|
|
|
|
|
811
|
|
|
def __enter__(self): |
|
812
|
|
|
"""With-statement caller.""" |
|
813
|
|
|
return self |
|
814
|
|
|
|
|
815
|
|
|
def __init__(self, filename): |
|
816
|
|
|
""" |
|
817
|
|
|
Constructor. |
|
818
|
|
|
|
|
819
|
|
|
Inputs: |
|
820
|
|
|
filename -- the filename this database will be created with |
|
821
|
|
|
""" |
|
822
|
|
|
uid = uuid4() |
|
823
|
|
|
self.name = uid.hex + '.gpkg.part' |
|
824
|
|
|
self.__file_path = join(filename, self.name) |
|
825
|
|
|
self.__db_con = connect(self.__file_path) |
|
826
|
|
|
with self.__db_con as db_con: |
|
827
|
|
|
cursor = db_con.cursor() |
|
828
|
|
|
stmt = """ |
|
829
|
|
|
CREATE TABLE tiles ( |
|
830
|
|
|
id INTEGER PRIMARY KEY AUTOINCREMENT, |
|
831
|
|
|
zoom_level INTEGER NOT NULL, |
|
832
|
|
|
tile_column INTEGER NOT NULL, |
|
833
|
|
|
tile_row INTEGER NOT NULL, |
|
834
|
|
|
tile_data BLOB NOT NULL, |
|
835
|
|
|
UNIQUE (zoom_level, tile_column, tile_row)); |
|
836
|
|
|
""" |
|
837
|
|
|
|
|
838
|
|
|
cursor.execute(stmt) |
|
839
|
|
|
# Enable pragma for fast sqlite creation |
|
840
|
|
|
cursor.execute("pragma synchronous = off;") |
|
841
|
|
|
cursor.execute("pragma journal_mode = off;") |
|
842
|
|
|
cursor.execute("pragma page_size = 80000;") |
|
843
|
|
|
cursor.execute("pragma foreign_keys = 1;") |
|
844
|
|
|
self.image_blob_stmt = """ |
|
845
|
|
|
INSERT INTO tiles |
|
846
|
|
|
(zoom_level, tile_column, tile_row, tile_data) |
|
847
|
|
|
VALUES (?,?,?,?) |
|
848
|
|
|
""" |
|
849
|
|
|
|
|
850
|
|
|
def execute(self, statement, inputs=None): |
|
851
|
|
|
with self.__db_con as db_con: |
|
852
|
|
|
cursor = db_con.cursor() |
|
853
|
|
|
if inputs is not None: |
|
854
|
|
|
result_cursor = cursor.execute(statement, inputs) |
|
855
|
|
|
else: |
|
856
|
|
|
result_cursor = cursor.execute(statement) |
|
857
|
|
|
return result_cursor |
|
858
|
|
|
|
|
859
|
|
|
def insert_image_blob(self, z, x, y, data): |
|
860
|
|
|
""" |
|
861
|
|
|
Inserts a binary data array containing an image into a sqlite3 |
|
862
|
|
|
database. |
|
863
|
|
|
|
|
864
|
|
|
Inputs: |
|
865
|
|
|
z -- the zoom level of the binary data |
|
866
|
|
|
x -- the row number of the data |
|
867
|
|
|
y -- the column number of the data |
|
868
|
|
|
data -- the image data containing in a binary array |
|
869
|
|
|
""" |
|
870
|
|
|
with self.__db_con as db_con: |
|
871
|
|
|
cursor = db_con.cursor() |
|
872
|
|
|
cursor.execute(self.image_blob_stmt, (z, x, y, data)) |
|
873
|
|
|
|
|
874
|
|
|
def __exit__(self, type, value, traceback): |
|
875
|
|
|
"""Resource cleanup on destruction.""" |
|
876
|
|
|
self.__db_con.close() |
|
877
|
|
|
|
|
878
|
|
|
|
|
879
|
|
|
def img_to_buf(img, img_type, jpeg_quality=75): |
|
880
|
|
|
""" |
|
881
|
|
|
Returns a buffer array with image binary data for the input image. |
|
882
|
|
|
This code is based on logic implemented in MapProxy to convert PNG |
|
883
|
|
|
images to JPEG then return the buffer. |
|
884
|
|
|
|
|
885
|
|
|
Inputs: |
|
886
|
|
|
img -- an image on the filesystem to be converted to binary |
|
887
|
|
|
img_type -- the MIME type of the image (JPG, PNG) |
|
888
|
|
|
""" |
|
889
|
|
|
defaults = {} |
|
890
|
|
|
buf = ioBuffer() |
|
891
|
|
|
if img_type == 'jpeg': |
|
892
|
|
|
img.convert('RGB') |
|
893
|
|
|
# Hardcoding a default compression of 75% for JPEGs |
|
894
|
|
|
defaults['quality'] = jpeg_quality |
|
895
|
|
|
elif img_type == 'source': |
|
896
|
|
|
img_type = img.format |
|
897
|
|
|
img.save(buf, img_type, **defaults) |
|
898
|
|
|
buf.seek(0) |
|
899
|
|
|
return buf |
|
900
|
|
|
|
|
901
|
|
|
|
|
902
|
|
|
def img_has_transparency(img): |
|
903
|
|
|
""" |
|
904
|
|
|
Returns a 0 if the input image has no transparency, 1 if it has some, |
|
905
|
|
|
and -1 if the image is fully transparent. Tiles *should be a perfect |
|
906
|
|
|
square (e.g, 256x256), so it can be safe to assume the first dimension |
|
907
|
|
|
will match the second. This will ensure compatibility with different |
|
908
|
|
|
tile sizes other than 256x256. This code is based on logic implemented |
|
909
|
|
|
in MapProxy to check for images that have transparency. |
|
910
|
|
|
|
|
911
|
|
|
Inputs: |
|
912
|
|
|
img -- an Image object from the PIL library |
|
913
|
|
|
""" |
|
914
|
|
|
size = img.size[0] |
|
915
|
|
|
if img.mode == 'P': |
|
916
|
|
|
# For paletted images |
|
917
|
|
|
if img.info.get('transparency', False): |
|
918
|
|
|
return True |
|
919
|
|
|
# Convert to RGBA to check alpha |
|
920
|
|
|
img = img.convert('RGBA') |
|
921
|
|
|
if img.mode == 'RGBA': |
|
922
|
|
|
# Returns the number of pixels in this image that are transparent |
|
923
|
|
|
# Assuming a tile size of 256, 65536 would be fully transparent |
|
924
|
|
|
transparent_pixels = img.histogram()[-size] |
|
925
|
|
|
if transparent_pixels == 0: |
|
926
|
|
|
# No transparency |
|
927
|
|
|
return 0 |
|
928
|
|
|
elif 0 < transparent_pixels < (size * size): |
|
929
|
|
|
# Image has some transparency |
|
930
|
|
|
return 1 |
|
931
|
|
|
else: |
|
932
|
|
|
# Image is fully transparent, and can be discarded |
|
933
|
|
|
return -1 |
|
934
|
|
|
#return img.histogram()[-size] |
|
935
|
|
|
return False |
|
936
|
|
|
|
|
937
|
|
|
|
|
938
|
|
|
def file_count(base_dir): |
|
939
|
|
|
""" |
|
940
|
|
|
A function that finds all image tiles in a base directory. The base |
|
941
|
|
|
directory should be arranged in TMS format, i.e. z/x/y. |
|
942
|
|
|
|
|
943
|
|
|
Inputs: |
|
944
|
|
|
base_dir -- the name of the TMS folder containing tiles. |
|
945
|
|
|
|
|
946
|
|
|
Returns: |
|
947
|
|
|
A list of dictionary objects containing the full file path and TMS |
|
948
|
|
|
coordinates of the image tile. |
|
949
|
|
|
""" |
|
950
|
|
|
print("Calculating number of tiles, this could take a while...") |
|
951
|
|
|
file_list = [] |
|
952
|
|
|
# Avoiding dots (functional references) will increase performance of |
|
953
|
|
|
# the loop because they will not be reevaluated each iteration. |
|
954
|
|
|
for root, sub_folders, files in walk(base_dir): |
|
955
|
|
|
temp_list = [join(root, f) for f in files if f.endswith(IMAGE_TYPES)] |
|
956
|
|
|
file_list += temp_list |
|
957
|
|
|
print("Found {} total tiles.".format(len(file_list))) |
|
958
|
|
|
return [split_all(item) for item in file_list] |
|
959
|
|
|
|
|
960
|
|
|
|
|
961
|
|
|
def split_all(path): |
|
962
|
|
|
""" |
|
963
|
|
|
Function that parses TMS coordinates from a full images file path. |
|
964
|
|
|
|
|
965
|
|
|
Inputs: |
|
966
|
|
|
path -- a full file path to an image tile. |
|
967
|
|
|
|
|
968
|
|
|
Returns: |
|
969
|
|
|
A dictionary containing the TMS coordinates of the tile and its full |
|
970
|
|
|
file path. |
|
971
|
|
|
""" |
|
972
|
|
|
parts = [] |
|
973
|
|
|
full_path = path |
|
974
|
|
|
# Parse out the tms coordinates |
|
975
|
|
|
for i in xrange(3): |
|
976
|
|
|
head, tail = split(path) |
|
977
|
|
|
parts.append(tail) |
|
978
|
|
|
path = head |
|
979
|
|
|
file_dict = dict(y=int(parts[0].split('.')[0]), |
|
980
|
|
|
x=int(parts[1]), |
|
981
|
|
|
z=int(parts[2]), |
|
982
|
|
|
path=full_path) |
|
983
|
|
|
return file_dict |
|
984
|
|
|
|
|
985
|
|
|
|
|
986
|
|
|
def worker_map(temp_db, tile_dict, extra_args, invert_y): |
|
987
|
|
|
""" |
|
988
|
|
|
Function responsible for sending the correct oriented tile data to a |
|
989
|
|
|
temporary sqlite3 database. |
|
990
|
|
|
|
|
991
|
|
|
Inputs: |
|
992
|
|
|
temp_db -- a temporary sqlite3 database that will hold this worker's tiles |
|
993
|
|
|
tile_dict -- a dictionary with TMS coordinates and file path for a tile |
|
994
|
|
|
tile_info -- a list of ZoomMetadata objects pre-generated for this tile set |
|
995
|
|
|
imagery -- the type of image format to send to the sqlite3 database |
|
996
|
|
|
invert_y -- a function that will flip the Y axis of the tile if present |
|
997
|
|
|
""" |
|
998
|
|
|
tile_info = extra_args['tile_info'] |
|
999
|
|
|
imagery = extra_args['imagery'] |
|
1000
|
|
|
jpeg_quality = extra_args['jpeg_quality'] |
|
1001
|
|
|
zoom = tile_dict['z'] |
|
1002
|
|
|
level = next((item for item in tile_info if item.zoom == zoom), None) |
|
1003
|
|
|
x_row = tile_dict['x'] - level.min_tile_row |
|
1004
|
|
|
if invert_y is not None: |
|
1005
|
|
|
y_offset = invert_y(tile_dict['z'], level.max_tile_col) |
|
1006
|
|
|
y_column = invert_y(tile_dict['z'], tile_dict['y']) |
|
1007
|
|
|
y_column -= y_offset |
|
1008
|
|
|
else: |
|
1009
|
|
|
y_column = tile_dict['y'] - level.min_tile_col |
|
1010
|
|
|
if IOPEN is not None: |
|
1011
|
|
|
img = IOPEN(tile_dict['path'], 'r') |
|
1012
|
|
|
data = ioBuffer() |
|
1013
|
|
|
if imagery == 'mixed': |
|
1014
|
|
|
if img_has_transparency(img): |
|
1015
|
|
|
data = img_to_buf(img, 'png', jpeg_quality).read() |
|
1016
|
|
|
else: |
|
1017
|
|
|
data = img_to_buf(img, 'jpeg', jpeg_quality).read() |
|
1018
|
|
|
else: |
|
1019
|
|
|
data = img_to_buf(img, imagery, jpeg_quality).read() |
|
1020
|
|
|
temp_db.insert_image_blob(zoom, x_row, y_column, sbinary(data)) |
|
1021
|
|
|
else: |
|
1022
|
|
|
file_handle = open(tile_dict['path'], 'rb') |
|
1023
|
|
|
data = buffer(file_handle.read()) |
|
1024
|
|
|
temp_db.insert_image_blob(zoom, x_row, y_column, data) |
|
1025
|
|
|
file_handle.close() |
|
1026
|
|
|
|
|
1027
|
|
|
|
|
1028
|
|
|
def sqlite_worker(file_list, extra_args): |
|
1029
|
|
|
""" |
|
1030
|
|
|
Worker function called by asynchronous processes. This function |
|
1031
|
|
|
iterates through a set of tiles to process them into a TempDB object. |
|
1032
|
|
|
|
|
1033
|
|
|
Inputs: |
|
1034
|
|
|
file_list -- an array containing a subset of tiles that will be processed |
|
1035
|
|
|
by this function into a TempDB object |
|
1036
|
|
|
base_dir -- the directory in which the geopackage will be created, |
|
1037
|
|
|
.gpkg.part files will be generated here |
|
1038
|
|
|
metadata -- a ZoomLevelMetadata object containing information about |
|
1039
|
|
|
the tiles in the TMS directory |
|
1040
|
|
|
""" |
|
1041
|
|
|
temp_db = TempDB(extra_args['root_dir']) |
|
1042
|
|
|
with TempDB(extra_args['root_dir']) as temp_db: |
|
1043
|
|
|
invert_y = None |
|
1044
|
|
|
if extra_args['lower_left']: |
|
1045
|
|
|
if extra_args['srs'] == 3857: |
|
1046
|
|
|
invert_y = Mercator.invert_y |
|
1047
|
|
|
elif extra_args['srs'] == 4326: |
|
1048
|
|
|
invert_y = Geodetic.invert_y |
|
1049
|
|
|
elif extra_args['srs'] == 3395: |
|
1050
|
|
|
invert_y = EllipsoidalMercator.invert_y |
|
1051
|
|
|
elif extra_args['srs'] == 9804: |
|
1052
|
|
|
invert_y = ScaledWorldMercator.invert_y |
|
1053
|
|
|
[worker_map(temp_db, item, extra_args, invert_y) for item in file_list] |
|
1054
|
|
|
|
|
1055
|
|
|
|
|
1056
|
|
|
def allocate(cores, pool, file_list, extra_args): |
|
1057
|
|
|
""" |
|
1058
|
|
|
Recursive function that fairly distributes tiles to asynchronous worker |
|
1059
|
|
|
processes. For N processes and C cores, N=C if C is divisible by 2. If |
|
1060
|
|
|
not, then N is the largest factor of 8 that is still less than C. |
|
1061
|
|
|
""" |
|
1062
|
|
|
if cores is 1: |
|
1063
|
|
|
print("Spawning worker with {} files".format(len(file_list))) |
|
1064
|
|
|
return [pool.apply_async(sqlite_worker, [file_list, extra_args])] |
|
1065
|
|
|
else: |
|
1066
|
|
|
files = len(file_list) |
|
1067
|
|
|
head = allocate( |
|
1068
|
|
|
int(cores / 2), pool, file_list[:int(files / 2)], extra_args) |
|
1069
|
|
|
tail = allocate( |
|
1070
|
|
|
int(cores / 2), pool, file_list[int(files / 2):], extra_args) |
|
1071
|
|
|
return head + tail |
|
1072
|
|
|
|
|
1073
|
|
|
|
|
1074
|
|
|
def build_lut(file_list, lower_left, srs): |
|
1075
|
|
|
""" |
|
1076
|
|
|
Build a lookup table that aids in metadata generation. |
|
1077
|
|
|
|
|
1078
|
|
|
Inputs: |
|
1079
|
|
|
file_list -- the file_list dict made with file_count() |
|
1080
|
|
|
lower_left -- bool indicating tile grid numbering scheme (tms or wmts) |
|
1081
|
|
|
srs -- the spatial reference system of the tile grid |
|
1082
|
|
|
|
|
1083
|
|
|
Returns: |
|
1084
|
|
|
An array of ZoomLevelMetadata objects that describe each zoom level of the |
|
1085
|
|
|
tile grid. |
|
1086
|
|
|
""" |
|
1087
|
|
|
# Initialize a projection class |
|
1088
|
|
|
if srs == 3857: |
|
1089
|
|
|
projection = Mercator() |
|
1090
|
|
|
elif srs == 4326: |
|
1091
|
|
|
projection = Geodetic() |
|
1092
|
|
|
elif srs == 9804: |
|
1093
|
|
|
projection = ScaledWorldMercator() |
|
1094
|
|
|
else: |
|
1095
|
|
|
projection = EllipsoidalMercator() |
|
1096
|
|
|
# Create a list of zoom levels from the base directory |
|
1097
|
|
|
zoom_levels = list(set([int(item['z']) for item in file_list])) |
|
1098
|
|
|
zoom_levels.sort() |
|
1099
|
|
|
matrix = [] |
|
1100
|
|
|
# For every zoom in the list... |
|
1101
|
|
|
for zoom in zoom_levels: |
|
1102
|
|
|
# create a new ZoomMetadata object... |
|
1103
|
|
|
level = ZoomMetadata() |
|
1104
|
|
|
level.zoom = zoom |
|
1105
|
|
|
# Sometimes, tiling programs do not generate the folders responsible |
|
1106
|
|
|
# for the X axis if no tiles are being made within them. This results |
|
1107
|
|
|
# in tiles "shifting" because of the way they are renumbered when |
|
1108
|
|
|
# placed into a geopackage. |
|
1109
|
|
|
# To fix, is there a zoom level preceding this one... |
|
1110
|
|
|
if zoom - 1 in [item for item in zoom_levels if item == (zoom - 1)]: |
|
1111
|
|
|
# there is, now retrieve it.... |
|
1112
|
|
|
(prev, ) = ([item for item in matrix if item.zoom == (zoom - 1)]) |
|
1113
|
|
|
# and fix the grid alignment values |
|
1114
|
|
|
level.min_tile_row = 2 * prev.min_tile_row |
|
1115
|
|
|
level.min_tile_col = 2 * prev.min_tile_col |
|
1116
|
|
|
level.max_tile_row = 2 * prev.max_tile_row + 1 |
|
1117
|
|
|
level.max_tile_col = 2 * prev.max_tile_col + 1 |
|
1118
|
|
|
# Calculate the width and height |
|
1119
|
|
|
level.matrix_width = prev.matrix_width * 2 |
|
1120
|
|
|
level.matrix_height = prev.matrix_height * 2 |
|
1121
|
|
|
else: |
|
1122
|
|
|
# Get all possible x and y values... |
|
1123
|
|
|
x_vals = [int(item['x']) |
|
1124
|
|
|
for item in file_list if int(item['z']) == zoom] |
|
1125
|
|
|
y_vals = [int(item['y']) |
|
1126
|
|
|
for item in file_list if int(item['z']) == zoom] |
|
1127
|
|
|
# then get the min/max values for each. |
|
1128
|
|
|
level.min_tile_row, level.max_tile_row = min(x_vals), max(x_vals) |
|
1129
|
|
|
level.min_tile_col, level.max_tile_col = min(y_vals), max(y_vals) |
|
1130
|
|
|
# Fill in the matrix width and height for this top level |
|
1131
|
|
|
x_width_max = max([item[ |
|
1132
|
|
|
'x'] for item in file_list if item['z'] == level.zoom]) |
|
1133
|
|
|
x_width_min = min([item[ |
|
1134
|
|
|
'x'] for item in file_list if item['z'] == level.zoom]) |
|
1135
|
|
|
level.matrix_width = (x_width_max - x_width_min) + 1 |
|
1136
|
|
|
y_height_max = max([item[ |
|
1137
|
|
|
'y'] for item in file_list if item['z'] == level.zoom]) |
|
1138
|
|
|
y_height_min = min([item[ |
|
1139
|
|
|
'y'] for item in file_list if item['z'] == level.zoom]) |
|
1140
|
|
|
level.matrix_height = (y_height_max - y_height_min) + 1 |
|
1141
|
|
|
if lower_left: |
|
1142
|
|
|
# TMS-style tile grid, so to calc the top left corner of the grid, |
|
1143
|
|
|
# you must get the min x (row) value and the max y (col) value + 1. |
|
1144
|
|
|
# You are adding 1 to the y value because the math to calc the |
|
1145
|
|
|
# coord assumes you want the bottom left corner, not the top left. |
|
1146
|
|
|
# Similarly, to get the bottom right corner, add 1 to x value. |
|
1147
|
|
|
level.min_x, level.max_y = projection.get_coord( |
|
1148
|
|
|
level.zoom, level.min_tile_row, level.max_tile_col + 1) |
|
1149
|
|
|
level.max_x, level.min_y = projection.get_coord( |
|
1150
|
|
|
level.zoom, level.max_tile_row + 1, level.min_tile_col) |
|
1151
|
|
|
else: |
|
1152
|
|
|
# WMTS-style tile grid, so to calc the top left corner of the grid, |
|
1153
|
|
|
# you must get the min x (row value and the min y (col) value + 1. |
|
1154
|
|
|
# You are adding 1 to the y value because the math to calc the |
|
1155
|
|
|
# coord assumes you want the bottom left corner, not the top left. |
|
1156
|
|
|
# Similarly, to get the bottom right corner, add 1 to x value. |
|
1157
|
|
|
# -- Since this is WMTS, we must invert the Y axis before we calc |
|
1158
|
|
|
inv_min_y = projection.invert_y(level.zoom, level.min_tile_col) |
|
1159
|
|
|
inv_max_y = projection.invert_y(level.zoom, level.max_tile_col) |
|
1160
|
|
|
level.min_x, level.max_y = projection.get_coord( |
|
1161
|
|
|
level.zoom, level.min_tile_row, inv_min_y + 1) |
|
1162
|
|
|
level.max_x, level.min_y = projection.get_coord( |
|
1163
|
|
|
level.zoom, level.max_tile_row + 1, inv_max_y) |
|
1164
|
|
|
# Finally, add this ZoomMetadata object to the list |
|
1165
|
|
|
matrix.append(level) |
|
1166
|
|
|
return matrix |
|
1167
|
|
|
|
|
1168
|
|
|
|
|
1169
|
|
|
def combine_worker_dbs(out_geopackage): |
|
1170
|
|
|
""" |
|
1171
|
|
|
Searches for .gpkg.part files in the base directory and merges them |
|
1172
|
|
|
into one Geopackage file |
|
1173
|
|
|
|
|
1174
|
|
|
Inputs: |
|
1175
|
|
|
out_geopackage -- the final output geopackage file |
|
1176
|
|
|
""" |
|
1177
|
|
|
base_dir = split(out_geopackage.file_path)[0] |
|
1178
|
|
|
if base_dir == "": |
|
1179
|
|
|
base_dir = "." |
|
1180
|
|
|
glob_path = join(base_dir + '/*.gpkg.part') |
|
1181
|
|
|
file_list = glob(glob_path) |
|
1182
|
|
|
print("Merging temporary databases...") |
|
1183
|
|
|
#[out_geopackage.assimilate(f) for f in file_list] |
|
1184
|
|
|
itr = len(file_list) |
|
1185
|
|
|
status = ["|", "/", "-", "\\"] |
|
1186
|
|
|
counter = 0 |
|
1187
|
|
|
for tdb in file_list: |
|
1188
|
|
|
comp = len(file_list) - itr |
|
1189
|
|
|
itr -= 1 |
|
1190
|
|
|
out_geopackage.assimilate(tdb) |
|
1191
|
|
|
if tdb == file_list[-1]: |
|
1192
|
|
|
stdout.write("\r[X] Progress: [" + "==" * comp + " " * itr + "]") |
|
1193
|
|
|
else: |
|
1194
|
|
|
stdout.write("\r[" + status[counter] + "] Progress: [" + "==" * |
|
1195
|
|
|
comp + " " * itr + "]") |
|
1196
|
|
|
stdout.flush() |
|
1197
|
|
|
if counter != len(status) - 1: |
|
1198
|
|
|
counter += 1 |
|
1199
|
|
|
else: |
|
1200
|
|
|
counter = 0 |
|
1201
|
|
|
print(" All geopackages merged!") |
|
1202
|
|
|
|
|
1203
|
|
|
|
|
1204
|
|
|
def main(arg_list): |
|
1205
|
|
|
""" |
|
1206
|
|
|
Create a geopackage from a directory of tiles arranged in TMS or WMTS |
|
1207
|
|
|
format. |
|
1208
|
|
|
|
|
1209
|
|
|
Inputs: |
|
1210
|
|
|
arg_list -- an ArgumentParser object containing command-line options and |
|
1211
|
|
|
flags |
|
1212
|
|
|
""" |
|
1213
|
|
|
# Build the file dictionary |
|
1214
|
|
|
files = file_count(arg_list.source_folder) |
|
1215
|
|
|
if len(files) == 0: |
|
1216
|
|
|
# If there are no files, exit the script |
|
1217
|
|
|
print(" Ensure the correct source tile directory was specified.") |
|
1218
|
|
|
exit(1) |
|
1219
|
|
|
# Is the input tile grid aligned to lower-left or not? |
|
1220
|
|
|
lower_left = arg_list.tileorigin == 'll' or arg_list.tileorigin == 'sw' |
|
1221
|
|
|
# Get the output file destination directory |
|
1222
|
|
|
root_dir, _ = split(arg_list.output_file) |
|
1223
|
|
|
# Build the tile matrix info object |
|
1224
|
|
|
tile_info = build_lut(files, lower_left, arg_list.srs) |
|
1225
|
|
|
# Initialize the output file |
|
1226
|
|
|
if arg_list.threading: |
|
1227
|
|
|
# Enable tiling on multiple CPU cores |
|
1228
|
|
|
cores = cpu_count() |
|
1229
|
|
|
pool = Pool(cores) |
|
1230
|
|
|
# Build allocate dictionary |
|
1231
|
|
|
extra_args = dict(root_dir=root_dir, |
|
1232
|
|
|
tile_info=tile_info, |
|
1233
|
|
|
lower_left=lower_left, |
|
1234
|
|
|
srs=arg_list.srs, |
|
1235
|
|
|
imagery=arg_list.imagery, |
|
1236
|
|
|
jpeg_quality=arg_list.q) |
|
1237
|
|
|
results = allocate(cores, pool, files, extra_args) |
|
1238
|
|
|
status = ["|", "/", "-", "\\"] |
|
1239
|
|
|
counter = 0 |
|
1240
|
|
|
try: |
|
1241
|
|
|
while True: |
|
1242
|
|
|
rem = sum([1 for item in results if not item.ready()]) |
|
1243
|
|
|
if rem == 0: |
|
1244
|
|
|
stdout.write("\r[X] Progress: [" + "==" * (cores - rem) + |
|
1245
|
|
|
" " * rem + "]") |
|
1246
|
|
|
stdout.flush() |
|
1247
|
|
|
print(" All Done!") |
|
1248
|
|
|
break |
|
1249
|
|
|
else: |
|
1250
|
|
|
stdout.write("\r[" + status[counter] + "] Progress: [" + |
|
1251
|
|
|
"==" * (cores - rem) + " " * rem + "]") |
|
1252
|
|
|
stdout.flush() |
|
1253
|
|
|
if counter != len(status) - 1: |
|
1254
|
|
|
counter += 1 |
|
1255
|
|
|
else: |
|
1256
|
|
|
counter = 0 |
|
1257
|
|
|
sleep(.25) |
|
1258
|
|
|
pool.close() |
|
1259
|
|
|
pool.join() |
|
1260
|
|
|
except KeyboardInterrupt: |
|
1261
|
|
|
print(" Interrupted!") |
|
1262
|
|
|
pool.terminate() |
|
1263
|
|
|
exit(1) |
|
1264
|
|
|
else: |
|
1265
|
|
|
# Debugging call to bypass multiprocessing (-T) |
|
1266
|
|
|
extra_args = dict(root_dir=root_dir, |
|
1267
|
|
|
tile_info=tile_info, |
|
1268
|
|
|
lower_left=lower_left, |
|
1269
|
|
|
srs=arg_list.srs, |
|
1270
|
|
|
imagery=arg_list.imagery, |
|
1271
|
|
|
jpeg_quality=arg_list.q) |
|
1272
|
|
|
sqlite_worker(files, extra_args) |
|
1273
|
|
|
# Combine the individual temp databases into the output file |
|
1274
|
|
|
with Geopackage(arg_list.output_file, arg_list.srs) as gpkg: |
|
1275
|
|
|
combine_worker_dbs(gpkg) |
|
1276
|
|
|
# Using the data in the output file, create the metadata for it |
|
1277
|
|
|
gpkg.update_metadata(tile_info) |
|
1278
|
|
|
print("Complete") |
|
1279
|
|
|
|
|
1280
|
|
|
|
|
1281
|
|
|
if __name__ == '__main__': |
|
1282
|
|
|
print(""" |
|
1283
|
|
|
tiles2gpkg_parallel.py Copyright (C) 2014 Reinventing Geospatial, Inc |
|
1284
|
|
|
This program comes with ABSOLUTELY NO WARRANTY. |
|
1285
|
|
|
This is free software, and you are welcome to redistribute it |
|
1286
|
|
|
under certain conditions. |
|
1287
|
|
|
""") |
|
1288
|
|
|
PARSER = ArgumentParser(description="Convert TMS folder into geopackage") |
|
1289
|
|
|
PARSER.add_argument("source_folder", |
|
1290
|
|
|
metavar="source", |
|
1291
|
|
|
help="Source folder of TMS files.") |
|
1292
|
|
|
PARSER.add_argument("output_file", |
|
1293
|
|
|
metavar="dest", |
|
1294
|
|
|
help="Destination file path.") |
|
1295
|
|
|
PARSER.add_argument("-tileorigin", |
|
1296
|
|
|
metavar="tile_origin", |
|
1297
|
|
|
help="Tile point of origin location. Valid options " + |
|
1298
|
|
|
"are ll, ul, nw, or sw.", |
|
1299
|
|
|
choices=["ll", "ul", "sw", "nw"], |
|
1300
|
|
|
default="ll") |
|
1301
|
|
|
PARSER.add_argument("-srs", |
|
1302
|
|
|
metavar="srs", |
|
1303
|
|
|
help="Spatial reference " + "system. Valid options are" |
|
1304
|
|
|
+ "3857, 4326, 3395, and 9804.", |
|
1305
|
|
|
type=int, |
|
1306
|
|
|
choices=[3857, 4326, 3395, 9804], |
|
1307
|
|
|
default=3857) |
|
1308
|
|
|
PARSER.add_argument("-imagery", |
|
1309
|
|
|
metavar="imagery", |
|
1310
|
|
|
help="Imagery type. Valid options are mixed, " + |
|
1311
|
|
|
"jpeg, png, or source.", |
|
1312
|
|
|
choices=["mixed", "jpeg", "png", "source"], |
|
1313
|
|
|
default="source") |
|
1314
|
|
|
PARSER.add_argument("-q", |
|
1315
|
|
|
metavar="quality", |
|
1316
|
|
|
type=int, |
|
1317
|
|
|
default=75, |
|
1318
|
|
|
help="Quality for jpeg images, 0-100. Default is 75", |
|
1319
|
|
|
choices=list(range(100))) |
|
1320
|
|
|
PARSER.add_argument("-a", |
|
1321
|
|
|
dest="append", |
|
1322
|
|
|
action="store_true", |
|
1323
|
|
|
default=False, |
|
1324
|
|
|
help="Append tile set to existing geopackage") |
|
1325
|
|
|
PARSER.add_argument("-T", |
|
1326
|
|
|
dest="threading", |
|
1327
|
|
|
action="store_false", |
|
1328
|
|
|
default=True, |
|
1329
|
|
|
help="Disable multiprocessing.") |
|
1330
|
|
|
ARG_LIST = PARSER.parse_args() |
|
1331
|
|
|
if not exists(ARG_LIST.source_folder) or exists(ARG_LIST.output_file): |
|
1332
|
|
|
PARSER.print_usage() |
|
1333
|
|
|
print("Ensure that TMS directory exists and out file does not.") |
|
1334
|
|
|
exit(1) |
|
1335
|
|
|
if ARG_LIST.q is not None and ARG_LIST.imagery == 'png': |
|
1336
|
|
|
PARSER.print_usage() |
|
1337
|
|
|
print("-q cannot be used with png") |
|
1338
|
|
|
exit(1) |
|
1339
|
|
|
main(ARG_LIST) |
|
1340
|
|
|
|