|
@@ 288-370 (lines=83) @@
|
| 285 |
|
return meters_x, meters_y |
| 286 |
|
|
| 287 |
|
|
| 288 |
|
class ScaledWorldMercator(EllipsoidalMercator): |
| 289 |
|
""" |
| 290 |
|
Scaled World Mercator projection class that holds specific calculations |
| 291 |
|
and formulas for EPSG9804/9805 projection proposed by NGA Craig Rollins. |
| 292 |
|
""" |
| 293 |
|
|
| 294 |
|
def __init__(self): |
| 295 |
|
""" |
| 296 |
|
Constructor |
| 297 |
|
""" |
| 298 |
|
super(ScaledWorldMercator, self).__init__() |
| 299 |
|
|
| 300 |
|
@staticmethod |
| 301 |
|
def pixel_size(z): |
| 302 |
|
""" |
| 303 |
|
Calculates the pixel size for a given zoom level. |
| 304 |
|
""" |
| 305 |
|
return 125829.12 / 2**z |
| 306 |
|
|
| 307 |
|
@staticmethod |
| 308 |
|
def lat_to_northing(lat): |
| 309 |
|
""" |
| 310 |
|
Convert a latitude to a northing |
| 311 |
|
/ / pi phi \ / 1 - e sin(phi) \ e/2 \ |
| 312 |
|
y(phi) = R ln| tan| --- + --- | | -------------- | | |
| 313 |
|
\ \ 4 2 / \ 1 + e sin(phi) / / |
| 314 |
|
""" |
| 315 |
|
r = 6378137.0 * 0.857385503731176 |
| 316 |
|
e = 0.081819190842621 |
| 317 |
|
return r * log(tan((pi / 2 + lat) / 2) * ((1 - e * sin(lat)) / |
| 318 |
|
(1 + e * sin(lat)))**(e / 2)) |
| 319 |
|
|
| 320 |
|
@staticmethod |
| 321 |
|
def tile_to_lat_lon(z, x, y): |
| 322 |
|
""" |
| 323 |
|
Returns the lat/lon coordinates of the bottom-left corner of the input |
| 324 |
|
tile. Finds the value numerically (using the secant method). A scale |
| 325 |
|
factor has been added specifically for scaled world mercator. |
| 326 |
|
|
| 327 |
|
Inputs: |
| 328 |
|
z -- zoom level value for input tile |
| 329 |
|
x -- tile column value for input tile |
| 330 |
|
y -- tile row value for input tile |
| 331 |
|
""" |
| 332 |
|
n = 2.0**z |
| 333 |
|
r = 6378137.0 * 0.857385503731176 |
| 334 |
|
lon = x / n * 360.0 - 180.0 |
| 335 |
|
my = (y - 2**(z - 1)) * r * pi * 2 / 2**z |
| 336 |
|
|
| 337 |
|
def f(phi): |
| 338 |
|
return ScaledWorldMercator.lat_to_northing(phi) - my |
| 339 |
|
|
| 340 |
|
lat = 0.0 |
| 341 |
|
oldLat = 1.0 |
| 342 |
|
diff = 1.0 |
| 343 |
|
while abs(diff) > 0.0001: |
| 344 |
|
newLat = lat - f(lat) * (lat - oldLat) / (f(lat) - f(oldLat)) |
| 345 |
|
if newLat > 1.4849969713855238: |
| 346 |
|
newLat = 1.4849969713855238 |
| 347 |
|
elif newLat < -1.4849969713855238: |
| 348 |
|
newLat = -1.4849969713855238 |
| 349 |
|
oldLat = lat |
| 350 |
|
lat = newLat |
| 351 |
|
diff = lat - oldLat |
| 352 |
|
lat = lat * 180.0 / pi |
| 353 |
|
return lat, lon |
| 354 |
|
|
| 355 |
|
def tile_to_meters(self, z, x, y): |
| 356 |
|
""" |
| 357 |
|
Returns the meter coordinates of the bottom-left corner of the input |
| 358 |
|
tile. A scale factor has been added to the longitude meters |
| 359 |
|
calculation. |
| 360 |
|
|
| 361 |
|
Inputs: |
| 362 |
|
z -- zoom level value for input tile |
| 363 |
|
x -- tile column (longitude) value for input tile |
| 364 |
|
y -- tile row (latitude) value for input tile |
| 365 |
|
""" |
| 366 |
|
lat, lon = self.tile_to_lat_lon(z, x, y) |
| 367 |
|
meters_x = lon * (pi * (6378137.0 * 0.857385503731176)) / 180.0 |
| 368 |
|
meters_y = self.lat_to_northing(lat * pi / 180.0) |
| 369 |
|
# Instituting a 2 decimal place round to ensure accuracy |
| 370 |
|
return meters_x, round(meters_y, 2) |
| 371 |
|
|
| 372 |
|
|
| 373 |
|
class ZoomMetadata(object): |
|
@@ 214-285 (lines=72) @@
|
| 211 |
|
return '%.7f' % (int(coord * 10000000) / float(10000000)) |
| 212 |
|
|
| 213 |
|
|
| 214 |
|
class EllipsoidalMercator(Mercator): |
| 215 |
|
""" |
| 216 |
|
Ellipsoidal Mercator projection class that holds specific calculations and |
| 217 |
|
formulas for EPSG3395. |
| 218 |
|
""" |
| 219 |
|
|
| 220 |
|
def __init__(self): |
| 221 |
|
""" |
| 222 |
|
Constructor |
| 223 |
|
""" |
| 224 |
|
super(EllipsoidalMercator, self).__init__() |
| 225 |
|
|
| 226 |
|
@staticmethod |
| 227 |
|
def lat_to_northing(lat): |
| 228 |
|
""" |
| 229 |
|
Convert a latitude to a northing |
| 230 |
|
/ / pi phi \ / 1 - e sin(phi) \ e/2 \ |
| 231 |
|
y(phi) = R ln| tan| --- + --- | | -------------- | | |
| 232 |
|
\ \ 4 2 / \ 1 + e sin(phi) / / |
| 233 |
|
""" |
| 234 |
|
r = 6378137.0 |
| 235 |
|
e = 0.081819190842621 |
| 236 |
|
return r * log(tan((pi / 2 + lat) / 2) * ((1 - e * sin(lat)) / |
| 237 |
|
(1 + e * sin(lat)))**(e / 2)) |
| 238 |
|
|
| 239 |
|
@staticmethod |
| 240 |
|
def tile_to_lat_lon(z, x, y): |
| 241 |
|
""" |
| 242 |
|
Returns the lat/lon coordinates of the bottom-left corner of the input |
| 243 |
|
tile. Finds the value numerically (using the secant method). |
| 244 |
|
|
| 245 |
|
Inputs: |
| 246 |
|
z -- zoom level value for input tile |
| 247 |
|
x -- tile column value for input tile |
| 248 |
|
y -- tile row value for input tile |
| 249 |
|
""" |
| 250 |
|
n = 2.0**z |
| 251 |
|
lon = x / n * 360.0 - 180.0 |
| 252 |
|
my = (y - 2**(z - 1)) * 6378137 * pi * 2 / 2**z |
| 253 |
|
|
| 254 |
|
def f(phi): |
| 255 |
|
return EllipsoidalMercator.lat_to_northing(phi) - my |
| 256 |
|
|
| 257 |
|
lat = 0.0 |
| 258 |
|
oldLat = 1.0 |
| 259 |
|
diff = 1.0 |
| 260 |
|
while abs(diff) > 0.0001: |
| 261 |
|
newLat = lat - f(lat) * (lat - oldLat) / (f(lat) - f(oldLat)) |
| 262 |
|
if newLat > 1.48499697138: |
| 263 |
|
newLat = 1.48499697138 |
| 264 |
|
elif newLat < -1.48499697138: |
| 265 |
|
newLat = -1.48499697138 |
| 266 |
|
oldLat = lat |
| 267 |
|
lat = newLat |
| 268 |
|
diff = lat - oldLat |
| 269 |
|
lat = lat * 180.0 / pi |
| 270 |
|
return lat, lon |
| 271 |
|
|
| 272 |
|
def tile_to_meters(self, z, x, y): |
| 273 |
|
""" |
| 274 |
|
Returns the meter coordinates of the bottom-left corner of the input |
| 275 |
|
tile. |
| 276 |
|
|
| 277 |
|
Inputs: |
| 278 |
|
z -- zoom level value for input tile |
| 279 |
|
x -- tile column (longitude) value for input tile |
| 280 |
|
y -- tile row (latitude) value for input tile |
| 281 |
|
""" |
| 282 |
|
lat, lon = self.tile_to_lat_lon(z, x, y) |
| 283 |
|
meters_x = lon * self.origin_shift / 180.0 |
| 284 |
|
meters_y = self.lat_to_northing(lat * pi / 180.0) |
| 285 |
|
return meters_x, meters_y |
| 286 |
|
|
| 287 |
|
|
| 288 |
|
class ScaledWorldMercator(EllipsoidalMercator): |