1
|
|
|
# Copyright 2014 Diamond Light Source Ltd. |
2
|
|
|
# |
3
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
4
|
|
|
# you may not use this file except in compliance with the License. |
5
|
|
|
# You may obtain a copy of the License at |
6
|
|
|
# |
7
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
8
|
|
|
# |
9
|
|
|
# Unless required by applicable law or agreed to in writing, software |
10
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
11
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12
|
|
|
# See the License for the specific language governing permissions and |
13
|
|
|
# limitations under the License. |
14
|
|
|
|
15
|
|
|
""" |
16
|
|
|
.. module:: crop_projections |
17
|
|
|
:platform: Unix |
18
|
|
|
:synopsis: A plugin to crop projections images without the need to specify |
19
|
|
|
preview dimensions. |
20
|
|
|
.. moduleauthor:: Malte Storm<[email protected]> |
21
|
|
|
""" |
22
|
|
|
|
23
|
|
|
|
24
|
|
|
from savu.plugins.plugin import Plugin |
25
|
|
|
from savu.plugins.driver.cpu_plugin import CpuPlugin |
26
|
|
|
from savu.plugins.utils import register_plugin |
27
|
|
|
|
28
|
|
|
@register_plugin |
29
|
|
|
class CropProjections(Plugin, CpuPlugin): |
30
|
|
|
""" |
31
|
|
|
A plugin to apply apply a crop to projection images without the need to \ |
32
|
|
|
specify preview dimensions. The crop will always be applied symmetrically \ |
33
|
|
|
to the original image. |
34
|
|
|
|
35
|
|
|
:u*param cropX: Crop in pixels applied to the x-dimensions (on each side).\ |
36
|
|
|
Default: 0. |
37
|
|
|
:u*param cropY: Crop in pixels applied to the y-dimensions (on each side).\ |
38
|
|
|
Default: 0. |
39
|
|
|
:u*param mode: Select the mode: (absolute|relative|automatic). \ |
40
|
|
|
Absolute will use the sizeX/Y parameters to determine the final size, \ |
41
|
|
|
relative will crop the images by the amount specified in cropX/Y and \ |
42
|
|
|
automatic will use metadata to determine the cropping size. \ |
43
|
|
|
Default: 'absolute'. |
44
|
|
|
:u*param sizeX: The x-size of the cropped image in pixels. A setting of -1\ |
45
|
|
|
means the original size will be preserved. Default: -1. |
46
|
|
|
:u*param sizeY: The y-size of the cropped image in pixels. A setting of -1\ |
47
|
|
|
means the original size will be preserved. Default: -1. |
48
|
|
|
""" |
49
|
|
|
|
50
|
|
|
def __init__(self): |
51
|
|
|
super(CropProjections, self).__init__("CropProjections") |
52
|
|
|
|
53
|
|
|
def pre_process(self): |
54
|
|
|
pass |
55
|
|
|
|
56
|
|
|
def process_frames(self, data): |
57
|
|
|
#in_dataset, out_dataset = self.get_datasets() |
58
|
|
|
#print(in_dataset[0].meta_data.get("indices2crop")) |
59
|
|
|
#indices2crop = in_dataset[0].meta_data.get('indices2crop') |
60
|
|
|
#shapeX = int(indices2crop[1]-indices2crop[0]) |
61
|
|
|
#shapeY = int(indices2crop[3]-indices2crop[2]) |
62
|
|
|
#print(shapeX, shapeY) |
63
|
|
|
return data[0][self.new_slice] |
64
|
|
|
|
65
|
|
|
def post_process(self): |
66
|
|
|
pass |
67
|
|
|
|
68
|
|
|
def setup(self): |
69
|
|
|
in_dataset, out_dataset = self.get_datasets() |
70
|
|
|
in_pData, out_pData = self.get_plugin_datasets() |
71
|
|
|
in_pData[0].plugin_data_setup('PROJECTION', 'single') |
72
|
|
|
det_y = in_dataset[0].get_data_dimension_by_axis_label('detector_y') |
73
|
|
|
det_x = in_dataset[0].get_data_dimension_by_axis_label('detector_x') |
74
|
|
|
|
75
|
|
|
self.shape = list(in_dataset[0].get_shape()) |
76
|
|
|
self.core_dims = in_pData[0].get_core_dimensions() |
77
|
|
|
img_dims = self.get_in_datasets()[0].get_shape() |
78
|
|
|
|
79
|
|
|
if self.parameters['mode'] == 'absolute': |
80
|
|
|
sizeX = self.parameters['sizeX'] |
81
|
|
|
sizeY = self.parameters['sizeY'] |
82
|
|
|
if sizeX > 0: |
83
|
|
|
xslice = slice(self.shape[det_x] / 2 - sizeX / 2, |
84
|
|
|
self.shape[det_x] / 2 + sizeX / 2 + sizeX % 2) |
85
|
|
|
self.shape[det_x] = 2 * (sizeX / 2) + sizeX % 2 |
86
|
|
|
else: |
87
|
|
|
xslice = slice(0, self.shape[det_x]) |
88
|
|
|
if sizeY > 0: |
89
|
|
|
yslice = slice(self.shape[det_y] / 2 - sizeY / 2, |
90
|
|
|
self.shape[det_y] / 2 + sizeY / 2 + sizeY % 2) |
91
|
|
|
self.shape[det_y] = 2 * (sizeY / 2) + sizeY % 2 |
92
|
|
|
else: |
93
|
|
|
yslice = slice(0, self.shape[det_y]) |
94
|
|
|
self.new_slice = [yslice, xslice] |
95
|
|
|
elif self.parameters['mode'] == 'relative': |
96
|
|
|
cropX = self.parameters['cropX'] |
97
|
|
|
cropY = self.parameters['cropY'] |
98
|
|
|
self.new_slice = [slice(cropY, img_dims[det_y] - cropY), |
99
|
|
|
slice(cropX, img_dims[det_x] - cropX)] |
100
|
|
|
self.shape[det_x] -= 2 * cropX |
101
|
|
|
self.shape[det_y] -= 2 * cropY |
102
|
|
|
elif self.parameters['mode'] == 'automatic': |
103
|
|
|
print(in_dataset[0].get_name()) |
104
|
|
|
print(in_dataset[0].meta_data.get_dictionary().keys()) |
105
|
|
|
for key, value in in_dataset[0].meta_data.get_dictionary().iteritems(): |
106
|
|
|
print (key, value) |
107
|
|
|
|
108
|
|
|
#print(in_dataset[0].meta_data.get('indices2crop')) |
109
|
|
|
# getting indices to crop the data |
110
|
|
|
#sample_data[int(indices2crop[2]):int(indices2crop[3]),int(indices2crop[0]):int(indices2crop[1])] |
111
|
|
|
#indices2crop = in_dataset[0].meta_data.get('indices2crop') |
112
|
|
|
#shapeX = int(indices2crop[1]-indices2crop[0]) |
113
|
|
|
#shapeY = int(indices2crop[3]-indices2crop[2]) |
114
|
|
|
#self.new_slice = [slice(indices2crop[0], indices2crop[1]), |
115
|
|
|
# slice(indices2crop[2], indices2crop[3])] |
116
|
|
|
#self.new_slice = [slice(indices2crop[2], indices2crop[3]), |
117
|
|
|
# slice(indices2crop[0], indices2crop[1])] |
118
|
|
|
#print(shapeX, shapeY) |
119
|
|
|
#self.shape[det_x] = shapeX |
120
|
|
|
#self.shape[det_y] = shapeY |
121
|
|
|
#print(img_dims[det_x], img_dims[det_y]) |
122
|
|
|
self.new_slice = (None, None) |
123
|
|
|
|
124
|
|
|
out_dataset[0].create_dataset(patterns=in_dataset[0], |
125
|
|
|
axis_labels=in_dataset[0], |
126
|
|
|
shape=tuple(self.shape)) |
127
|
|
|
out_pData[0].plugin_data_setup('PROJECTION', 'single') |
128
|
|
|
|