|
1
|
|
|
# Copyright 2014 Diamond Light Source Ltd. |
|
2
|
|
|
# |
|
3
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
4
|
|
|
# you may not use this file except in compliance with the License. |
|
5
|
|
|
# You may obtain a copy of the License at |
|
6
|
|
|
# |
|
7
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
8
|
|
|
# |
|
9
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
10
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
11
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
12
|
|
|
# See the License for the specific language governing permissions and |
|
13
|
|
|
# limitations under the License. |
|
14
|
|
|
|
|
15
|
|
|
""" |
|
16
|
|
|
.. module:: crop_projections |
|
17
|
|
|
:platform: Unix |
|
18
|
|
|
:synopsis: A plugin to crop projections images without the need to specify |
|
19
|
|
|
preview dimensions. |
|
20
|
|
|
.. moduleauthor:: Malte Storm<[email protected]> |
|
21
|
|
|
""" |
|
22
|
|
|
|
|
23
|
|
|
|
|
24
|
|
|
from savu.plugins.plugin import Plugin |
|
25
|
|
|
from savu.plugins.driver.cpu_plugin import CpuPlugin |
|
26
|
|
|
from savu.plugins.utils import register_plugin |
|
27
|
|
|
|
|
28
|
|
|
@register_plugin |
|
29
|
|
|
class CropProjections(Plugin, CpuPlugin): |
|
30
|
|
|
""" |
|
31
|
|
|
A plugin to apply apply a crop to projection images without the need to \ |
|
32
|
|
|
specify preview dimensions. The crop will always be applied symmetrically \ |
|
33
|
|
|
to the original image. |
|
34
|
|
|
|
|
35
|
|
|
:u*param cropX: Crop in pixels applied to the x-dimensions (on each side).\ |
|
36
|
|
|
Default: 0. |
|
37
|
|
|
:u*param cropY: Crop in pixels applied to the y-dimensions (on each side).\ |
|
38
|
|
|
Default: 0. |
|
39
|
|
|
:u*param mode: Select the mode: (absolute|relative|automatic). \ |
|
40
|
|
|
Absolute will use the sizeX/Y parameters to determine the final size, \ |
|
41
|
|
|
relative will crop the images by the amount specified in cropX/Y and \ |
|
42
|
|
|
automatic will use metadata to determine the cropping size. \ |
|
43
|
|
|
Default: 'absolute'. |
|
44
|
|
|
:u*param sizeX: The x-size of the cropped image in pixels. A setting of -1\ |
|
45
|
|
|
means the original size will be preserved. Default: -1. |
|
46
|
|
|
:u*param sizeY: The y-size of the cropped image in pixels. A setting of -1\ |
|
47
|
|
|
means the original size will be preserved. Default: -1. |
|
48
|
|
|
""" |
|
49
|
|
|
|
|
50
|
|
|
def __init__(self): |
|
51
|
|
|
super(CropProjections, self).__init__("CropProjections") |
|
52
|
|
|
|
|
53
|
|
|
def pre_process(self): |
|
54
|
|
|
pass |
|
55
|
|
|
|
|
56
|
|
|
def process_frames(self, data): |
|
57
|
|
|
#in_dataset, out_dataset = self.get_datasets() |
|
58
|
|
|
#print(in_dataset[0].meta_data.get("indices2crop")) |
|
59
|
|
|
#indices2crop = in_dataset[0].meta_data.get('indices2crop') |
|
60
|
|
|
#shapeX = int(indices2crop[1]-indices2crop[0]) |
|
61
|
|
|
#shapeY = int(indices2crop[3]-indices2crop[2]) |
|
62
|
|
|
#print(shapeX, shapeY) |
|
63
|
|
|
return data[0][self.new_slice] |
|
64
|
|
|
|
|
65
|
|
|
def post_process(self): |
|
66
|
|
|
pass |
|
67
|
|
|
|
|
68
|
|
|
def setup(self): |
|
69
|
|
|
in_dataset, out_dataset = self.get_datasets() |
|
70
|
|
|
in_pData, out_pData = self.get_plugin_datasets() |
|
71
|
|
|
in_pData[0].plugin_data_setup('PROJECTION', 'single') |
|
72
|
|
|
det_y = in_dataset[0].get_data_dimension_by_axis_label('detector_y') |
|
73
|
|
|
det_x = in_dataset[0].get_data_dimension_by_axis_label('detector_x') |
|
74
|
|
|
|
|
75
|
|
|
self.shape = list(in_dataset[0].get_shape()) |
|
76
|
|
|
self.core_dims = in_pData[0].get_core_dimensions() |
|
77
|
|
|
img_dims = self.get_in_datasets()[0].get_shape() |
|
78
|
|
|
|
|
79
|
|
|
if self.parameters['mode'] == 'absolute': |
|
80
|
|
|
sizeX = self.parameters['sizeX'] |
|
81
|
|
|
sizeY = self.parameters['sizeY'] |
|
82
|
|
|
if sizeX > 0: |
|
83
|
|
|
xslice = slice(self.shape[det_x] / 2 - sizeX / 2, |
|
84
|
|
|
self.shape[det_x] / 2 + sizeX / 2 + sizeX % 2) |
|
85
|
|
|
self.shape[det_x] = 2 * (sizeX / 2) + sizeX % 2 |
|
86
|
|
|
else: |
|
87
|
|
|
xslice = slice(0, self.shape[det_x]) |
|
88
|
|
|
if sizeY > 0: |
|
89
|
|
|
yslice = slice(self.shape[det_y] / 2 - sizeY / 2, |
|
90
|
|
|
self.shape[det_y] / 2 + sizeY / 2 + sizeY % 2) |
|
91
|
|
|
self.shape[det_y] = 2 * (sizeY / 2) + sizeY % 2 |
|
92
|
|
|
else: |
|
93
|
|
|
yslice = slice(0, self.shape[det_y]) |
|
94
|
|
|
self.new_slice = [yslice, xslice] |
|
95
|
|
|
elif self.parameters['mode'] == 'relative': |
|
96
|
|
|
cropX = self.parameters['cropX'] |
|
97
|
|
|
cropY = self.parameters['cropY'] |
|
98
|
|
|
self.new_slice = [slice(cropY, img_dims[det_y] - cropY), |
|
99
|
|
|
slice(cropX, img_dims[det_x] - cropX)] |
|
100
|
|
|
self.shape[det_x] -= 2 * cropX |
|
101
|
|
|
self.shape[det_y] -= 2 * cropY |
|
102
|
|
|
elif self.parameters['mode'] == 'automatic': |
|
103
|
|
|
print(in_dataset[0].get_name()) |
|
104
|
|
|
print(in_dataset[0].meta_data.get_dictionary().keys()) |
|
105
|
|
|
for key, value in in_dataset[0].meta_data.get_dictionary().iteritems(): |
|
106
|
|
|
print (key, value) |
|
107
|
|
|
|
|
108
|
|
|
#print(in_dataset[0].meta_data.get('indices2crop')) |
|
109
|
|
|
# getting indices to crop the data |
|
110
|
|
|
#sample_data[int(indices2crop[2]):int(indices2crop[3]),int(indices2crop[0]):int(indices2crop[1])] |
|
111
|
|
|
#indices2crop = in_dataset[0].meta_data.get('indices2crop') |
|
112
|
|
|
#shapeX = int(indices2crop[1]-indices2crop[0]) |
|
113
|
|
|
#shapeY = int(indices2crop[3]-indices2crop[2]) |
|
114
|
|
|
#self.new_slice = [slice(indices2crop[0], indices2crop[1]), |
|
115
|
|
|
# slice(indices2crop[2], indices2crop[3])] |
|
116
|
|
|
#self.new_slice = [slice(indices2crop[2], indices2crop[3]), |
|
117
|
|
|
# slice(indices2crop[0], indices2crop[1])] |
|
118
|
|
|
#print(shapeX, shapeY) |
|
119
|
|
|
#self.shape[det_x] = shapeX |
|
120
|
|
|
#self.shape[det_y] = shapeY |
|
121
|
|
|
#print(img_dims[det_x], img_dims[det_y]) |
|
122
|
|
|
self.new_slice = (None, None) |
|
123
|
|
|
|
|
124
|
|
|
out_dataset[0].create_dataset(patterns=in_dataset[0], |
|
125
|
|
|
axis_labels=in_dataset[0], |
|
126
|
|
|
shape=tuple(self.shape)) |
|
127
|
|
|
out_pData[0].plugin_data_setup('PROJECTION', 'single') |
|
128
|
|
|
|