|
1
|
|
|
""" |
|
2
|
|
|
Tests for deepreg/dataset/loader/grouped_loader.py in |
|
3
|
|
|
pytest style |
|
4
|
|
|
""" |
|
5
|
|
|
from os.path import join |
|
6
|
|
|
from typing import List |
|
7
|
|
|
|
|
8
|
|
|
import numpy as np |
|
9
|
|
|
import pytest |
|
10
|
|
|
|
|
11
|
|
|
from deepreg.dataset.loader.grouped_loader import GroupedDataLoader |
|
12
|
|
|
from deepreg.dataset.loader.h5_loader import H5FileLoader |
|
13
|
|
|
from deepreg.dataset.loader.nifti_loader import NiftiFileLoader |
|
14
|
|
|
|
|
15
|
|
|
FileLoaderDict = dict(nifti=NiftiFileLoader, h5=H5FileLoader) |
|
16
|
|
|
DataPaths = dict(nifti="data/test/nifti/grouped", h5="data/test/h5/grouped") |
|
17
|
|
|
image_shape = (64, 64, 60) |
|
18
|
|
|
|
|
19
|
|
|
|
|
20
|
|
|
def sample_count(ni: List[int], direction: str) -> int: |
|
21
|
|
|
""" |
|
22
|
|
|
Count number of samples. |
|
23
|
|
|
|
|
24
|
|
|
:param ni: list, each element correspond to the number of images per group |
|
25
|
|
|
:param direction: unconstrained/forward/backward |
|
26
|
|
|
:return: number of samples in total |
|
27
|
|
|
""" |
|
28
|
|
|
arr = np.array(ni) |
|
29
|
|
|
if direction == "unconstrained": |
|
30
|
|
|
sample_total = np.sum(arr * (arr - 1)) |
|
31
|
|
|
else: |
|
32
|
|
|
sample_total = np.sum(arr * (arr - 1) / 2) |
|
33
|
|
|
return int(sample_total) |
|
34
|
|
|
|
|
35
|
|
|
|
|
36
|
|
|
def test_init(): |
|
37
|
|
|
""" |
|
38
|
|
|
Test exceptions with appropriate messages and counts samples correctly |
|
39
|
|
|
""" |
|
40
|
|
|
for key_file_loader, file_loader in FileLoaderDict.items(): |
|
41
|
|
|
for train_split in ["test", "train"]: |
|
42
|
|
|
for prob in [0, 0.5, 1]: |
|
43
|
|
|
for sample_in_group in [True, False]: |
|
44
|
|
|
data_dir_paths = [join(DataPaths[key_file_loader], train_split)] |
|
45
|
|
|
common_args = dict( |
|
46
|
|
|
file_loader=file_loader, |
|
47
|
|
|
labeled=True, |
|
48
|
|
|
sample_label="all", |
|
49
|
|
|
intra_group_prob=prob, |
|
50
|
|
|
intra_group_option="forward", |
|
51
|
|
|
sample_image_in_group=sample_in_group, |
|
52
|
|
|
seed=None, |
|
53
|
|
|
) |
|
54
|
|
|
if train_split == "test" and prob < 1: |
|
55
|
|
|
# sample with fewer than 2 groups. |
|
56
|
|
|
# In "test" we only have one group |
|
57
|
|
|
with pytest.raises(ValueError) as err_info: |
|
58
|
|
|
data_loader = GroupedDataLoader( |
|
59
|
|
|
data_dir_paths=data_dir_paths, |
|
60
|
|
|
image_shape=image_shape, |
|
61
|
|
|
**common_args, |
|
62
|
|
|
) |
|
63
|
|
|
data_loader.close() |
|
64
|
|
|
assert "we need at least two groups" in str(err_info.value) |
|
65
|
|
|
|
|
66
|
|
|
elif train_split == "train" and sample_in_group is True: |
|
67
|
|
|
# ensure sample count is accurate |
|
68
|
|
|
# (only for train dir, test dir uses same logic) |
|
69
|
|
|
data_loader = GroupedDataLoader( |
|
70
|
|
|
data_dir_paths=data_dir_paths, |
|
71
|
|
|
image_shape=image_shape, |
|
72
|
|
|
**common_args, |
|
73
|
|
|
) |
|
74
|
|
|
assert data_loader.sample_indices is None |
|
75
|
|
|
assert data_loader._num_samples == 2 |
|
76
|
|
|
data_loader.close() |
|
77
|
|
|
|
|
78
|
|
|
elif sample_in_group is False and 0 < prob < 1: |
|
79
|
|
|
# specifying conflicting intra/inter group parameters |
|
80
|
|
|
with pytest.raises(ValueError) as err_info: |
|
81
|
|
|
data_loader = GroupedDataLoader( |
|
82
|
|
|
data_dir_paths=data_dir_paths, |
|
83
|
|
|
image_shape=image_shape, |
|
84
|
|
|
**common_args, |
|
85
|
|
|
) |
|
86
|
|
|
data_loader.close() |
|
87
|
|
|
assert "Mixing intra and inter groups is not supported" in str( |
|
88
|
|
|
err_info.value |
|
89
|
|
|
) |
|
90
|
|
|
|
|
91
|
|
|
|
|
92
|
|
|
def test_validate_data_files(): |
|
93
|
|
|
""" |
|
94
|
|
|
Test validate_data_files function looks for inconsistencies |
|
95
|
|
|
in the fixed/moving image and label lists. |
|
96
|
|
|
If there is any issue it will raise an error, otherwise it returns None. |
|
97
|
|
|
""" |
|
98
|
|
|
for key_file_loader, file_loader in FileLoaderDict.items(): |
|
99
|
|
|
for train_split in ["train", "test"]: |
|
100
|
|
|
for labeled in [True, False]: |
|
101
|
|
|
data_dir_paths = [join(DataPaths[key_file_loader], train_split)] |
|
102
|
|
|
common_args = dict( |
|
103
|
|
|
file_loader=file_loader, |
|
104
|
|
|
labeled=labeled, |
|
105
|
|
|
sample_label="all", |
|
106
|
|
|
intra_group_prob=1, |
|
107
|
|
|
intra_group_option="forward", |
|
108
|
|
|
sample_image_in_group=False, |
|
109
|
|
|
seed=None if train_split == "train" else 0, |
|
110
|
|
|
) |
|
111
|
|
|
|
|
112
|
|
|
data_loader = GroupedDataLoader( |
|
113
|
|
|
data_dir_paths=data_dir_paths, |
|
114
|
|
|
image_shape=image_shape, |
|
115
|
|
|
**common_args, |
|
116
|
|
|
) |
|
117
|
|
|
|
|
118
|
|
|
assert data_loader.validate_data_files() is None |
|
119
|
|
|
|
|
120
|
|
|
|
|
121
|
|
|
def test_get_inter_sample_indices(): |
|
122
|
|
|
""" |
|
123
|
|
|
Test all possible intergroup sampling indices are correctly calculated |
|
124
|
|
|
""" |
|
125
|
|
|
for key_file_loader, file_loader in FileLoaderDict.items(): |
|
126
|
|
|
data_dir_paths = [join(DataPaths[key_file_loader], "train")] |
|
127
|
|
|
common_args = dict( |
|
128
|
|
|
file_loader=file_loader, |
|
129
|
|
|
labeled=True, |
|
130
|
|
|
sample_label="all", |
|
131
|
|
|
intra_group_prob=0, |
|
132
|
|
|
intra_group_option="forward", |
|
133
|
|
|
sample_image_in_group=False, |
|
134
|
|
|
seed=None, |
|
135
|
|
|
) |
|
136
|
|
|
data_loader = GroupedDataLoader( |
|
137
|
|
|
data_dir_paths=data_dir_paths, image_shape=image_shape, **common_args |
|
138
|
|
|
) |
|
139
|
|
|
|
|
140
|
|
|
ni = np.array(data_loader.num_images_per_group) |
|
141
|
|
|
num_samples = np.sum(ni) * (np.sum(ni) - 1) - sum(ni * (ni - 1)) |
|
142
|
|
|
|
|
143
|
|
|
sample_indices = data_loader.sample_indices |
|
144
|
|
|
sample_indices.sort() |
|
145
|
|
|
unique_indices = list(set(sample_indices)) |
|
146
|
|
|
unique_indices.sort() |
|
147
|
|
|
|
|
148
|
|
|
assert data_loader._num_samples == num_samples |
|
149
|
|
|
assert sample_indices == unique_indices |
|
150
|
|
|
|
|
151
|
|
|
|
|
152
|
|
|
def test_get_intra_sample_indices(): |
|
153
|
|
|
""" |
|
154
|
|
|
Test all possible intragroup sampling indices are correctly calculated |
|
155
|
|
|
Ensure exception is thrown for unsupported group_option |
|
156
|
|
|
""" |
|
157
|
|
|
for key_file_loader, file_loader in FileLoaderDict.items(): |
|
158
|
|
|
for split in ["train", "test"]: |
|
159
|
|
|
data_dir_paths = [join(DataPaths[key_file_loader], split)] |
|
160
|
|
|
common_args = dict( |
|
161
|
|
|
file_loader=file_loader, |
|
162
|
|
|
labeled=True, |
|
163
|
|
|
sample_label="all", |
|
164
|
|
|
intra_group_prob=1, |
|
165
|
|
|
sample_image_in_group=False, |
|
166
|
|
|
seed=None, |
|
167
|
|
|
) |
|
168
|
|
|
# test feasible intra_group_option |
|
169
|
|
|
for intra_group_option in ["forward", "backward", "unconstrained"]: |
|
170
|
|
|
data_loader = GroupedDataLoader( |
|
171
|
|
|
data_dir_paths=data_dir_paths, |
|
172
|
|
|
image_shape=image_shape, |
|
173
|
|
|
intra_group_option=intra_group_option, |
|
174
|
|
|
**common_args, |
|
175
|
|
|
) |
|
176
|
|
|
|
|
177
|
|
|
ni = data_loader.num_images_per_group |
|
178
|
|
|
num_samples = sample_count(ni, intra_group_option) |
|
179
|
|
|
|
|
180
|
|
|
sample_indices = data_loader.sample_indices |
|
181
|
|
|
sample_indices.sort() |
|
182
|
|
|
unique_indices = list(set(sample_indices)) |
|
183
|
|
|
unique_indices.sort() |
|
184
|
|
|
|
|
185
|
|
|
# test all possible indices are generated |
|
186
|
|
|
assert data_loader._num_samples == num_samples |
|
187
|
|
|
assert sample_indices == unique_indices |
|
188
|
|
|
|
|
189
|
|
|
# test exception thrown for unsupported group option |
|
190
|
|
|
with pytest.raises(ValueError) as err_info: |
|
191
|
|
|
data_loader = GroupedDataLoader( |
|
192
|
|
|
data_dir_paths=data_dir_paths, |
|
193
|
|
|
image_shape=image_shape, |
|
194
|
|
|
intra_group_option="wrong", |
|
195
|
|
|
**common_args, |
|
196
|
|
|
) |
|
197
|
|
|
data_loader.close() |
|
198
|
|
|
assert "Unknown intra_group_option," in str(err_info.value) |
|
199
|
|
|
|
|
200
|
|
|
|
|
201
|
|
|
def test_sample_index_generator(): |
|
202
|
|
|
""" |
|
203
|
|
|
Test to check the randomness and deterministic index generator for train |
|
204
|
|
|
Test dir not checked because it contains only a single group of 2 images |
|
205
|
|
|
""" |
|
206
|
|
|
|
|
207
|
|
|
for key_file_loader, file_loader in FileLoaderDict.items(): |
|
208
|
|
|
common_args = dict( |
|
209
|
|
|
image_shape=image_shape, |
|
210
|
|
|
data_dir_paths=[join(DataPaths[key_file_loader], "train")], |
|
211
|
|
|
file_loader=file_loader, |
|
212
|
|
|
labeled=True, |
|
213
|
|
|
sample_label="all", |
|
214
|
|
|
) |
|
215
|
|
|
|
|
216
|
|
|
# test feasible intra_group_option |
|
217
|
|
|
for sample_in_group in [False, True]: |
|
218
|
|
|
probs = [0, 0.5, 1] if sample_in_group else [0, 1] |
|
219
|
|
|
for prob in probs: |
|
220
|
|
|
for direction in ["forward", "backward", "unconstrained"]: |
|
221
|
|
|
indices_to_compare = [] |
|
222
|
|
|
|
|
223
|
|
|
for seed in [0, 1, 0]: |
|
224
|
|
|
data_loader = GroupedDataLoader( |
|
225
|
|
|
intra_group_prob=prob, |
|
226
|
|
|
intra_group_option=direction, |
|
227
|
|
|
sample_image_in_group=sample_in_group, |
|
228
|
|
|
seed=seed, |
|
229
|
|
|
**common_args, |
|
230
|
|
|
) |
|
231
|
|
|
|
|
232
|
|
|
data_indices = [] |
|
233
|
|
|
for ( |
|
234
|
|
|
moving_index, |
|
235
|
|
|
fixed_index, |
|
236
|
|
|
indices, |
|
237
|
|
|
) in data_loader.sample_index_generator(): |
|
238
|
|
|
assert isinstance(moving_index, tuple) |
|
239
|
|
|
assert isinstance(fixed_index, tuple) |
|
240
|
|
|
assert isinstance(indices, list) |
|
241
|
|
|
data_indices += indices |
|
242
|
|
|
|
|
243
|
|
|
data_loader.close() |
|
244
|
|
|
indices_to_compare.append(data_indices) |
|
245
|
|
|
|
|
246
|
|
|
# test different seeds give different indices |
|
247
|
|
|
assert not np.allclose(indices_to_compare[0], indices_to_compare[1]) |
|
248
|
|
|
# test same seeds give the same indices |
|
249
|
|
|
assert np.allclose(indices_to_compare[0], indices_to_compare[2]) |
|
250
|
|
|
|
|
251
|
|
|
# test exception thrown for unsupported intra_group_option option |
|
252
|
|
|
data_loader = GroupedDataLoader( |
|
253
|
|
|
intra_group_prob=1, |
|
254
|
|
|
intra_group_option="wrong", |
|
255
|
|
|
sample_image_in_group=True, |
|
256
|
|
|
seed=0, |
|
257
|
|
|
**common_args, |
|
258
|
|
|
) |
|
259
|
|
|
with pytest.raises(ValueError) as err_info: |
|
260
|
|
|
next(data_loader.sample_index_generator()) |
|
261
|
|
|
data_loader.close() |
|
262
|
|
|
assert "Unknown intra_group_option" in str(err_info.value) |
|
263
|
|
|
|
|
264
|
|
|
|
|
265
|
|
|
def test_close(): |
|
266
|
|
|
""" |
|
267
|
|
|
Test the close function |
|
268
|
|
|
Since fixed and moving loaders are the same only need to test the moving |
|
269
|
|
|
""" |
|
270
|
|
|
for key_file_loader, file_loader in FileLoaderDict.items(): |
|
271
|
|
|
for split in ["train", "test"]: |
|
272
|
|
|
data_dir_paths = [join(DataPaths[key_file_loader], split)] |
|
273
|
|
|
|
|
274
|
|
|
data_loader = GroupedDataLoader( |
|
275
|
|
|
data_dir_paths=data_dir_paths, |
|
276
|
|
|
image_shape=image_shape, |
|
277
|
|
|
file_loader=file_loader, |
|
278
|
|
|
labeled=True, |
|
279
|
|
|
sample_label="all", |
|
280
|
|
|
intra_group_prob=1, |
|
281
|
|
|
intra_group_option="forward", |
|
282
|
|
|
sample_image_in_group=True, |
|
283
|
|
|
seed=0, |
|
284
|
|
|
) |
|
285
|
|
|
|
|
286
|
|
|
if key_file_loader == "h5": |
|
287
|
|
|
data_loader.close() |
|
288
|
|
|
for f in data_loader.loader_moving_image.h5_files.values(): |
|
289
|
|
|
assert not f.__bool__() |
|
290
|
|
|
|