1
|
|
|
""" |
2
|
|
|
Tests for deepreg/dataset/loader/grouped_loader.py in |
3
|
|
|
pytest style |
4
|
|
|
""" |
5
|
|
|
from os.path import join |
6
|
|
|
from typing import List |
7
|
|
|
|
8
|
|
|
import numpy as np |
9
|
|
|
import pytest |
10
|
|
|
|
11
|
|
|
from deepreg.dataset.loader.grouped_loader import GroupedDataLoader |
12
|
|
|
from deepreg.dataset.loader.h5_loader import H5FileLoader |
13
|
|
|
from deepreg.dataset.loader.nifti_loader import NiftiFileLoader |
14
|
|
|
|
15
|
|
|
FileLoaderDict = dict(nifti=NiftiFileLoader, h5=H5FileLoader) |
16
|
|
|
DataPaths = dict(nifti="data/test/nifti/grouped", h5="data/test/h5/grouped") |
17
|
|
|
image_shape = (64, 64, 60) |
18
|
|
|
|
19
|
|
|
|
20
|
|
|
def sample_count(ni: List[int], direction: str) -> int: |
21
|
|
|
""" |
22
|
|
|
Count number of samples. |
23
|
|
|
|
24
|
|
|
:param ni: list, each element correspond to the number of images per group |
25
|
|
|
:param direction: unconstrained/forward/backward |
26
|
|
|
:return: number of samples in total |
27
|
|
|
""" |
28
|
|
|
arr = np.array(ni) |
29
|
|
|
if direction == "unconstrained": |
30
|
|
|
sample_total = np.sum(arr * (arr - 1)) |
31
|
|
|
else: |
32
|
|
|
sample_total = np.sum(arr * (arr - 1) / 2) |
33
|
|
|
return int(sample_total) |
34
|
|
|
|
35
|
|
|
|
36
|
|
|
def test_init(): |
37
|
|
|
""" |
38
|
|
|
Test exceptions with appropriate messages and counts samples correctly |
39
|
|
|
""" |
40
|
|
|
for key_file_loader, file_loader in FileLoaderDict.items(): |
41
|
|
|
for train_split in ["test", "train"]: |
42
|
|
|
for prob in [0, 0.5, 1]: |
43
|
|
|
for sample_in_group in [True, False]: |
44
|
|
|
data_dir_paths = [join(DataPaths[key_file_loader], train_split)] |
45
|
|
|
common_args = dict( |
46
|
|
|
file_loader=file_loader, |
47
|
|
|
labeled=True, |
48
|
|
|
sample_label="all", |
49
|
|
|
intra_group_prob=prob, |
50
|
|
|
intra_group_option="forward", |
51
|
|
|
sample_image_in_group=sample_in_group, |
52
|
|
|
seed=None, |
53
|
|
|
) |
54
|
|
|
if train_split == "test" and prob < 1: |
55
|
|
|
# sample with fewer than 2 groups. |
56
|
|
|
# In "test" we only have one group |
57
|
|
|
with pytest.raises(ValueError) as err_info: |
58
|
|
|
data_loader = GroupedDataLoader( |
59
|
|
|
data_dir_paths=data_dir_paths, |
60
|
|
|
image_shape=image_shape, |
61
|
|
|
**common_args, |
62
|
|
|
) |
63
|
|
|
data_loader.close() |
64
|
|
|
assert "we need at least two groups" in str(err_info.value) |
65
|
|
|
|
66
|
|
|
elif train_split == "train" and sample_in_group is True: |
67
|
|
|
# ensure sample count is accurate |
68
|
|
|
# (only for train dir, test dir uses same logic) |
69
|
|
|
data_loader = GroupedDataLoader( |
70
|
|
|
data_dir_paths=data_dir_paths, |
71
|
|
|
image_shape=image_shape, |
72
|
|
|
**common_args, |
73
|
|
|
) |
74
|
|
|
assert data_loader.sample_indices is None |
75
|
|
|
assert data_loader._num_samples == 2 |
76
|
|
|
data_loader.close() |
77
|
|
|
|
78
|
|
|
elif sample_in_group is False and 0 < prob < 1: |
79
|
|
|
# specifying conflicting intra/inter group parameters |
80
|
|
|
with pytest.raises(ValueError) as err_info: |
81
|
|
|
data_loader = GroupedDataLoader( |
82
|
|
|
data_dir_paths=data_dir_paths, |
83
|
|
|
image_shape=image_shape, |
84
|
|
|
**common_args, |
85
|
|
|
) |
86
|
|
|
data_loader.close() |
87
|
|
|
assert "Mixing intra and inter groups is not supported" in str( |
88
|
|
|
err_info.value |
89
|
|
|
) |
90
|
|
|
|
91
|
|
|
|
92
|
|
|
def test_validate_data_files(): |
93
|
|
|
""" |
94
|
|
|
Test validate_data_files function looks for inconsistencies |
95
|
|
|
in the fixed/moving image and label lists. |
96
|
|
|
If there is any issue it will raise an error, otherwise it returns None. |
97
|
|
|
""" |
98
|
|
|
for key_file_loader, file_loader in FileLoaderDict.items(): |
99
|
|
|
for train_split in ["train", "test"]: |
100
|
|
|
for labeled in [True, False]: |
101
|
|
|
data_dir_paths = [join(DataPaths[key_file_loader], train_split)] |
102
|
|
|
common_args = dict( |
103
|
|
|
file_loader=file_loader, |
104
|
|
|
labeled=labeled, |
105
|
|
|
sample_label="all", |
106
|
|
|
intra_group_prob=1, |
107
|
|
|
intra_group_option="forward", |
108
|
|
|
sample_image_in_group=False, |
109
|
|
|
seed=None if train_split == "train" else 0, |
110
|
|
|
) |
111
|
|
|
|
112
|
|
|
data_loader = GroupedDataLoader( |
113
|
|
|
data_dir_paths=data_dir_paths, |
114
|
|
|
image_shape=image_shape, |
115
|
|
|
**common_args, |
116
|
|
|
) |
117
|
|
|
|
118
|
|
|
assert data_loader.validate_data_files() is None |
119
|
|
|
|
120
|
|
|
|
121
|
|
|
def test_get_inter_sample_indices(): |
122
|
|
|
""" |
123
|
|
|
Test all possible intergroup sampling indices are correctly calculated |
124
|
|
|
""" |
125
|
|
|
for key_file_loader, file_loader in FileLoaderDict.items(): |
126
|
|
|
data_dir_paths = [join(DataPaths[key_file_loader], "train")] |
127
|
|
|
common_args = dict( |
128
|
|
|
file_loader=file_loader, |
129
|
|
|
labeled=True, |
130
|
|
|
sample_label="all", |
131
|
|
|
intra_group_prob=0, |
132
|
|
|
intra_group_option="forward", |
133
|
|
|
sample_image_in_group=False, |
134
|
|
|
seed=None, |
135
|
|
|
) |
136
|
|
|
data_loader = GroupedDataLoader( |
137
|
|
|
data_dir_paths=data_dir_paths, image_shape=image_shape, **common_args |
138
|
|
|
) |
139
|
|
|
|
140
|
|
|
ni = np.array(data_loader.num_images_per_group) |
141
|
|
|
num_samples = np.sum(ni) * (np.sum(ni) - 1) - sum(ni * (ni - 1)) |
142
|
|
|
|
143
|
|
|
sample_indices = data_loader.sample_indices |
144
|
|
|
sample_indices.sort() |
145
|
|
|
unique_indices = list(set(sample_indices)) |
146
|
|
|
unique_indices.sort() |
147
|
|
|
|
148
|
|
|
assert data_loader._num_samples == num_samples |
149
|
|
|
assert sample_indices == unique_indices |
150
|
|
|
|
151
|
|
|
|
152
|
|
|
def test_get_intra_sample_indices(): |
153
|
|
|
""" |
154
|
|
|
Test all possible intragroup sampling indices are correctly calculated |
155
|
|
|
Ensure exception is thrown for unsupported group_option |
156
|
|
|
""" |
157
|
|
|
for key_file_loader, file_loader in FileLoaderDict.items(): |
158
|
|
|
for split in ["train", "test"]: |
159
|
|
|
data_dir_paths = [join(DataPaths[key_file_loader], split)] |
160
|
|
|
common_args = dict( |
161
|
|
|
file_loader=file_loader, |
162
|
|
|
labeled=True, |
163
|
|
|
sample_label="all", |
164
|
|
|
intra_group_prob=1, |
165
|
|
|
sample_image_in_group=False, |
166
|
|
|
seed=None, |
167
|
|
|
) |
168
|
|
|
# test feasible intra_group_option |
169
|
|
|
for intra_group_option in ["forward", "backward", "unconstrained"]: |
170
|
|
|
data_loader = GroupedDataLoader( |
171
|
|
|
data_dir_paths=data_dir_paths, |
172
|
|
|
image_shape=image_shape, |
173
|
|
|
intra_group_option=intra_group_option, |
174
|
|
|
**common_args, |
175
|
|
|
) |
176
|
|
|
|
177
|
|
|
ni = data_loader.num_images_per_group |
178
|
|
|
num_samples = sample_count(ni, intra_group_option) |
179
|
|
|
|
180
|
|
|
sample_indices = data_loader.sample_indices |
181
|
|
|
sample_indices.sort() |
182
|
|
|
unique_indices = list(set(sample_indices)) |
183
|
|
|
unique_indices.sort() |
184
|
|
|
|
185
|
|
|
# test all possible indices are generated |
186
|
|
|
assert data_loader._num_samples == num_samples |
187
|
|
|
assert sample_indices == unique_indices |
188
|
|
|
|
189
|
|
|
# test exception thrown for unsupported group option |
190
|
|
|
with pytest.raises(ValueError) as err_info: |
191
|
|
|
data_loader = GroupedDataLoader( |
192
|
|
|
data_dir_paths=data_dir_paths, |
193
|
|
|
image_shape=image_shape, |
194
|
|
|
intra_group_option="wrong", |
195
|
|
|
**common_args, |
196
|
|
|
) |
197
|
|
|
data_loader.close() |
198
|
|
|
assert "Unknown intra_group_option," in str(err_info.value) |
199
|
|
|
|
200
|
|
|
|
201
|
|
|
def test_sample_index_generator(): |
202
|
|
|
""" |
203
|
|
|
Test to check the randomness and deterministic index generator for train |
204
|
|
|
Test dir not checked because it contains only a single group of 2 images |
205
|
|
|
""" |
206
|
|
|
|
207
|
|
|
for key_file_loader, file_loader in FileLoaderDict.items(): |
208
|
|
|
common_args = dict( |
209
|
|
|
image_shape=image_shape, |
210
|
|
|
data_dir_paths=[join(DataPaths[key_file_loader], "train")], |
211
|
|
|
file_loader=file_loader, |
212
|
|
|
labeled=True, |
213
|
|
|
sample_label="all", |
214
|
|
|
) |
215
|
|
|
|
216
|
|
|
# test feasible intra_group_option |
217
|
|
|
for sample_in_group in [False, True]: |
218
|
|
|
probs = [0, 0.5, 1] if sample_in_group else [0, 1] |
219
|
|
|
for prob in probs: |
220
|
|
|
for direction in ["forward", "backward", "unconstrained"]: |
221
|
|
|
indices_to_compare = [] |
222
|
|
|
|
223
|
|
|
for seed in [0, 1, 0]: |
224
|
|
|
data_loader = GroupedDataLoader( |
225
|
|
|
intra_group_prob=prob, |
226
|
|
|
intra_group_option=direction, |
227
|
|
|
sample_image_in_group=sample_in_group, |
228
|
|
|
seed=seed, |
229
|
|
|
**common_args, |
230
|
|
|
) |
231
|
|
|
|
232
|
|
|
data_indices = [] |
233
|
|
|
for ( |
234
|
|
|
moving_index, |
235
|
|
|
fixed_index, |
236
|
|
|
indices, |
237
|
|
|
) in data_loader.sample_index_generator(): |
238
|
|
|
assert isinstance(moving_index, tuple) |
239
|
|
|
assert isinstance(fixed_index, tuple) |
240
|
|
|
assert isinstance(indices, list) |
241
|
|
|
data_indices += indices |
242
|
|
|
|
243
|
|
|
data_loader.close() |
244
|
|
|
indices_to_compare.append(data_indices) |
245
|
|
|
|
246
|
|
|
# test different seeds give different indices |
247
|
|
|
assert not np.allclose(indices_to_compare[0], indices_to_compare[1]) |
248
|
|
|
# test same seeds give the same indices |
249
|
|
|
assert np.allclose(indices_to_compare[0], indices_to_compare[2]) |
250
|
|
|
|
251
|
|
|
# test exception thrown for unsupported intra_group_option option |
252
|
|
|
data_loader = GroupedDataLoader( |
253
|
|
|
intra_group_prob=1, |
254
|
|
|
intra_group_option="wrong", |
255
|
|
|
sample_image_in_group=True, |
256
|
|
|
seed=0, |
257
|
|
|
**common_args, |
258
|
|
|
) |
259
|
|
|
with pytest.raises(ValueError) as err_info: |
260
|
|
|
next(data_loader.sample_index_generator()) |
261
|
|
|
data_loader.close() |
262
|
|
|
assert "Unknown intra_group_option" in str(err_info.value) |
263
|
|
|
|
264
|
|
|
|
265
|
|
|
def test_close(): |
266
|
|
|
""" |
267
|
|
|
Test the close function |
268
|
|
|
Since fixed and moving loaders are the same only need to test the moving |
269
|
|
|
""" |
270
|
|
|
for key_file_loader, file_loader in FileLoaderDict.items(): |
271
|
|
|
for split in ["train", "test"]: |
272
|
|
|
data_dir_paths = [join(DataPaths[key_file_loader], split)] |
273
|
|
|
|
274
|
|
|
data_loader = GroupedDataLoader( |
275
|
|
|
data_dir_paths=data_dir_paths, |
276
|
|
|
image_shape=image_shape, |
277
|
|
|
file_loader=file_loader, |
278
|
|
|
labeled=True, |
279
|
|
|
sample_label="all", |
280
|
|
|
intra_group_prob=1, |
281
|
|
|
intra_group_option="forward", |
282
|
|
|
sample_image_in_group=True, |
283
|
|
|
seed=0, |
284
|
|
|
) |
285
|
|
|
|
286
|
|
|
if key_file_loader == "h5": |
287
|
|
|
data_loader.close() |
288
|
|
|
for f in data_loader.loader_moving_image.h5_files.values(): |
289
|
|
|
assert not f.__bool__() |
290
|
|
|
|