|
1
|
|
|
#!/usr/bin/env python |
|
2
|
|
|
# -*- coding: utf-8 -*- |
|
3
|
|
|
|
|
4
|
|
|
|
|
5
|
|
|
import logging as loggers |
|
6
|
|
|
|
|
7
|
|
|
import numpy as np |
|
8
|
|
|
import theano |
|
9
|
|
|
|
|
10
|
|
|
from deepy.utils import FLOATX, UniformInitializer, neural_computation, neural_computation_prefer_tensor |
|
11
|
|
|
from deepy.utils import convert_to_neural_var, convert_to_theano_var, build_activation |
|
12
|
|
|
|
|
13
|
|
|
logging = loggers.getLogger(__name__) |
|
14
|
|
|
|
|
15
|
|
|
class NeuralLayer(object): |
|
16
|
|
|
|
|
17
|
|
|
def __init__(self, name=None): |
|
18
|
|
|
""" |
|
19
|
|
|
Create a neural layer. |
|
20
|
|
|
""" |
|
21
|
|
|
self.name = name if name else self.__class__.__name__ |
|
22
|
|
|
self.input_dim = 0 |
|
23
|
|
|
self.input_dims = [0] |
|
24
|
|
|
self.output_dim = 0 |
|
25
|
|
|
self.output_dims= [0] |
|
26
|
|
|
|
|
27
|
|
|
self._linked_block = None |
|
28
|
|
|
|
|
29
|
|
|
self.initialized = False |
|
30
|
|
|
self.updates = [] |
|
31
|
|
|
self.training_updates = [] |
|
32
|
|
|
self.free_parameters = [] |
|
33
|
|
|
self.parameters = [] |
|
34
|
|
|
self.training_monitors = [] |
|
35
|
|
|
self.testing_monitors = [] |
|
36
|
|
|
self._registered_monitors = set() |
|
37
|
|
|
self._registered_updates = set() |
|
38
|
|
|
self._registered_training_updates = set() |
|
39
|
|
|
self.external_inputs = [] |
|
40
|
|
|
self.external_targets = [] |
|
41
|
|
|
self.parameter_count = 0 |
|
42
|
|
|
self.epoch_callbacks = [] |
|
43
|
|
|
self.training_callbacks = [] |
|
44
|
|
|
self.testing_callbacks = [] |
|
45
|
|
|
|
|
46
|
|
|
def initialize(self, input_dim=0, input_dims=None, no_prepare=False): |
|
47
|
|
|
""" |
|
48
|
|
|
Initialize the layer. |
|
49
|
|
|
:param no_prepare: avoid calling preparation function |
|
50
|
|
|
""" |
|
51
|
|
|
if self.initialized: |
|
52
|
|
|
return |
|
53
|
|
|
# configure input dimensions |
|
54
|
|
|
if input_dims: |
|
55
|
|
|
self.input_dims = input_dims |
|
56
|
|
|
self.input_dim = input_dims[0] |
|
57
|
|
|
else: |
|
58
|
|
|
self.input_dim = input_dim |
|
59
|
|
|
self.input_dims = [input_dims] |
|
60
|
|
|
# set default output dimension |
|
61
|
|
|
if self.output_dim == 0: |
|
62
|
|
|
self.output_dim = self.input_dim |
|
63
|
|
|
self.initialized = True |
|
64
|
|
|
# call prepare |
|
65
|
|
|
if not no_prepare: |
|
66
|
|
|
self.prepare() |
|
67
|
|
|
return self |
|
68
|
|
|
|
|
69
|
|
|
def compute(self, *inputs, **kwargs): |
|
70
|
|
|
""" |
|
71
|
|
|
Compute based on NeuralVariable. |
|
72
|
|
|
:type inputs: list of NeuralVariable |
|
73
|
|
|
:return: NeuralVariable |
|
74
|
|
|
""" |
|
75
|
|
|
from var import NeuralVariable |
|
76
|
|
|
if type(inputs[0]) != NeuralVariable: |
|
77
|
|
|
raise SystemError("The input of `compute` must be NeuralVar") |
|
78
|
|
|
|
|
79
|
|
|
dims = [t.dim() for t in inputs] |
|
80
|
|
|
if len(inputs) == 1: |
|
81
|
|
|
self.initialize(input_dim=dims[0]) |
|
82
|
|
|
else: |
|
83
|
|
|
self.initialize(input_dims=dims) |
|
84
|
|
|
# convert kwargs |
|
85
|
|
|
train_kwargs, test_kwargs, _, _ = convert_to_theano_var(kwargs) |
|
86
|
|
|
|
|
87
|
|
|
output = self.compute_tensor(*[t.tensor for t in inputs], **train_kwargs) |
|
88
|
|
|
test_output = self.compute_test_tesnor(*[t.test_tensor for t in inputs], **test_kwargs) |
|
89
|
|
|
|
|
90
|
|
|
if type(output) != list: |
|
91
|
|
|
return NeuralVariable(output, test_output, self.output_dim) |
|
92
|
|
|
else: |
|
93
|
|
|
return [NeuralVariable(*item) for item in zip(self.output_dims, output, test_output)] |
|
94
|
|
|
|
|
95
|
|
|
def prepare(self): |
|
96
|
|
|
""" |
|
97
|
|
|
Prepare function will be called after connected. |
|
98
|
|
|
""" |
|
99
|
|
|
return self.setup() |
|
100
|
|
|
|
|
101
|
|
|
def setup(self): |
|
102
|
|
|
""" |
|
103
|
|
|
!!! DEPRECATED !!! |
|
104
|
|
|
Setup function will be called after connected. |
|
105
|
|
|
""" |
|
106
|
|
|
pass |
|
107
|
|
|
|
|
108
|
|
|
@neural_computation_prefer_tensor |
|
109
|
|
|
def compute_tensor(self, *args, **kwargs): |
|
110
|
|
|
""" |
|
111
|
|
|
Compute with tensors in Theano. |
|
112
|
|
|
""" |
|
113
|
|
|
raise NotImplementedError("output function of '%s' is not implemented" % self.name) |
|
114
|
|
|
|
|
115
|
|
|
@neural_computation_prefer_tensor |
|
116
|
|
|
def compute_test_tesnor(self, *args, **kwargs): |
|
117
|
|
|
""" |
|
118
|
|
|
Compute with tensors in Theano in test time. |
|
119
|
|
|
""" |
|
120
|
|
|
return self.compute_tensor(*args, **kwargs) |
|
121
|
|
|
|
|
122
|
|
|
def compute_flexible_tensor(self, x, test=False): |
|
123
|
|
|
""" |
|
124
|
|
|
Deprecated. |
|
125
|
|
|
Compute with tensors in Theano, with a parameter to switch test or not. |
|
126
|
|
|
""" |
|
127
|
|
|
if test: |
|
128
|
|
|
return self.compute_test_tesnor(x) |
|
129
|
|
|
else: |
|
130
|
|
|
return self.compute_tensor(x) |
|
131
|
|
|
|
|
132
|
|
|
def belongs_to(self, block): |
|
133
|
|
|
""" |
|
134
|
|
|
Let the given block or network manage the parameters of this layer. |
|
135
|
|
|
:param block: Block or NeuralNetwork |
|
136
|
|
|
:return: NeuralLayer |
|
137
|
|
|
""" |
|
138
|
|
|
if self._linked_block: |
|
139
|
|
|
raise SystemError("One layer can not belong to two blocks") |
|
140
|
|
|
self._linked_block = block |
|
141
|
|
|
block.register_layer(self) |
|
142
|
|
|
return self |
|
143
|
|
|
|
|
144
|
|
|
def register(self, *layers): |
|
145
|
|
|
""" |
|
146
|
|
|
Register inner layers. |
|
147
|
|
|
""" |
|
148
|
|
|
self.register_inner_layers(*layers) |
|
149
|
|
|
|
|
150
|
|
|
def register_inner_layers(self, *layers): |
|
151
|
|
|
for layer in layers: |
|
152
|
|
|
self.register_parameters(*layer.parameters) |
|
153
|
|
|
self.register_updates(*layer.updates) |
|
154
|
|
|
self.register_training_updates(*layer.training_updates) |
|
155
|
|
|
|
|
156
|
|
|
def register_parameters(self, *parameters): |
|
157
|
|
|
""" |
|
158
|
|
|
Register parameters. |
|
159
|
|
|
""" |
|
160
|
|
|
for param in parameters: |
|
161
|
|
|
self.parameter_count += np.prod(param.get_value().shape) |
|
162
|
|
|
self.parameters.extend(parameters) |
|
163
|
|
|
|
|
164
|
|
|
def register_free_parameters(self, *free_parameters): |
|
165
|
|
|
""" |
|
166
|
|
|
Register free parameters, which means their value will not be learned by trainer. |
|
167
|
|
|
""" |
|
168
|
|
|
return self.free_parameters.extend(free_parameters) |
|
169
|
|
|
|
|
170
|
|
|
def register_updates(self, *updates): |
|
171
|
|
|
""" |
|
172
|
|
|
Register updates that will be executed in each iteration. |
|
173
|
|
|
""" |
|
174
|
|
|
for key, node in updates: |
|
175
|
|
|
if key not in self._registered_updates: |
|
176
|
|
|
self.updates.append((key, node)) |
|
177
|
|
|
self._registered_updates.add(key) |
|
178
|
|
|
|
|
179
|
|
|
def register_training_updates(self, *updates): |
|
180
|
|
|
""" |
|
181
|
|
|
Register updates that will only be executed in training phase. |
|
182
|
|
|
""" |
|
183
|
|
|
for key, node in updates: |
|
184
|
|
|
if key not in self._registered_training_updates: |
|
185
|
|
|
self.training_updates.append((key, node)) |
|
186
|
|
|
self._registered_training_updates.add(key) |
|
187
|
|
|
|
|
188
|
|
|
def register_monitors(self, *monitors): |
|
189
|
|
|
""" |
|
190
|
|
|
Register monitors they should be tuple of name and Theano variable. |
|
191
|
|
|
""" |
|
192
|
|
|
for key, node in monitors: |
|
193
|
|
|
if key not in self._registered_monitors: |
|
194
|
|
|
self.training_monitors.append((key, node)) |
|
195
|
|
|
self.testing_monitors.append((key, node)) |
|
196
|
|
|
self._registered_monitors.add(key) |
|
197
|
|
|
|
|
198
|
|
|
def register_external_inputs(self, *variables): |
|
199
|
|
|
""" |
|
200
|
|
|
Register external input variables. |
|
201
|
|
|
""" |
|
202
|
|
|
self.external_inputs.extend(variables) |
|
203
|
|
|
|
|
204
|
|
|
def register_external_targets(self, *variables): |
|
205
|
|
|
""" |
|
206
|
|
|
Register extenal target variables. |
|
207
|
|
|
""" |
|
208
|
|
|
self.external_targets.extend(variables) |
|
209
|
|
|
|
|
210
|
|
|
def register_training_callbacks(self, *callbacks): |
|
211
|
|
|
""" |
|
212
|
|
|
Register callback for each iteration in the training. |
|
213
|
|
|
""" |
|
214
|
|
|
self.training_callbacks.extend(callbacks) |
|
215
|
|
|
|
|
216
|
|
|
def register_testing_callbacks(self, *callbacks): |
|
217
|
|
|
""" |
|
218
|
|
|
Register callback for each iteration in the testing. |
|
219
|
|
|
""" |
|
220
|
|
|
self.testing_callbacks.extend(callbacks) |
|
221
|
|
|
|
|
222
|
|
|
def register_epoch_callbacks(self, *callbacks): |
|
223
|
|
|
""" |
|
224
|
|
|
Register callback which will be called after epoch finished. |
|
225
|
|
|
""" |
|
226
|
|
|
self.epoch_callbacks.extend(callbacks) |
|
227
|
|
|
|
|
228
|
|
|
def create_weight(self, input_n=1, output_n=1, suffix="", initializer=None, shape=None): |
|
229
|
|
|
if not shape: |
|
230
|
|
|
shape = (input_n, output_n) |
|
231
|
|
|
|
|
232
|
|
|
if not initializer: |
|
233
|
|
|
initializer = UniformInitializer() |
|
234
|
|
|
|
|
235
|
|
|
weight = theano.shared(initializer.sample(shape).astype(FLOATX), name='W_{}'.format(suffix)) |
|
236
|
|
|
|
|
237
|
|
|
logging.info('create weight W_%s: %s', suffix, str(shape)) |
|
238
|
|
|
return weight |
|
239
|
|
|
|
|
240
|
|
|
def create_bias(self, output_n=1, suffix="", value=0., shape=None): |
|
241
|
|
|
if not shape: |
|
242
|
|
|
shape = (output_n, ) |
|
243
|
|
|
bs = np.ones(shape) |
|
244
|
|
|
bs *= value |
|
245
|
|
|
bias = theano.shared(bs.astype(FLOATX), name='B_{}'.format(suffix)) |
|
246
|
|
|
logging.info('create bias B_%s: %s', suffix, str(shape)) |
|
247
|
|
|
return bias |
|
248
|
|
|
|
|
249
|
|
|
def create_vector(self, n, name, dtype=FLOATX): |
|
250
|
|
|
bs = np.zeros(n) |
|
251
|
|
|
v = theano.shared(bs.astype(dtype), name='{}'.format(name)) |
|
252
|
|
|
|
|
253
|
|
|
logging.info('create vector %s: %d', name, n) |
|
254
|
|
|
return v |
|
255
|
|
|
|
|
256
|
|
|
def create_matrix(self, m, n, name): |
|
257
|
|
|
|
|
258
|
|
|
matrix = theano.shared(np.zeros((m, n)).astype(FLOATX), name=name) |
|
259
|
|
|
|
|
260
|
|
|
logging.info('create matrix %s: %d x %d', name, m, n) |
|
261
|
|
|
return matrix |
|
262
|
|
|
|
|
263
|
|
|
def activation(self, name): |
|
264
|
|
|
return build_activation(name) |
|
265
|
|
|
|
|
266
|
|
|
def callback_forward_propagation(self): |
|
267
|
|
|
pass |
|
268
|
|
|
|
|
269
|
|
|
|