|
1
|
|
|
#!/usr/bin/env python |
|
2
|
|
|
# -*- coding: utf-8 -*- |
|
3
|
|
|
|
|
4
|
|
|
from __future__ import print_function |
|
5
|
|
|
import time |
|
6
|
|
|
import sys, os |
|
7
|
|
|
import numpy as np |
|
8
|
|
|
import logging as loggers |
|
9
|
|
|
from threading import Lock |
|
10
|
|
|
logging = loggers.getLogger("ScheduledTrainingServer") |
|
11
|
|
|
loggers.basicConfig(level=loggers.INFO) |
|
12
|
|
|
|
|
13
|
|
|
from platoon.channel import Controller |
|
14
|
|
|
from argparse import ArgumentParser |
|
15
|
|
|
|
|
16
|
|
|
|
|
17
|
|
|
CONTROLLER_PORT = 5567 |
|
18
|
|
|
|
|
19
|
|
|
class ScheduledTrainingServer(Controller): |
|
20
|
|
|
""" |
|
21
|
|
|
This multi-process controller implements patience-based early-stopping SGD |
|
22
|
|
|
""" |
|
23
|
|
|
|
|
24
|
|
|
def __init__(self, port=CONTROLLER_PORT, start_halving_at=5, end_at=10, step_len=10, |
|
25
|
|
|
valid_freq = 1000, |
|
26
|
|
|
learning_rate = 0.1, |
|
27
|
|
|
easgd_alpha=0.5): |
|
28
|
|
|
""" |
|
29
|
|
|
Initialize the controller. |
|
30
|
|
|
|
|
31
|
|
|
Args: |
|
32
|
|
|
step_len (int): batches in one training step |
|
33
|
|
|
config (dict) |
|
34
|
|
|
""" |
|
35
|
|
|
|
|
36
|
|
|
Controller.__init__(self, port) |
|
37
|
|
|
self.epoch_start_halving = start_halving_at |
|
38
|
|
|
self.end_at = end_at |
|
39
|
|
|
self.step_len = step_len |
|
40
|
|
|
self.start_time = None |
|
41
|
|
|
self.rand = np.random.RandomState(3) |
|
42
|
|
|
self.epoch = 0 |
|
43
|
|
|
self._current_iter = 0 |
|
44
|
|
|
self._iters_from_last_valid = 0 |
|
45
|
|
|
self._evaluating = False |
|
46
|
|
|
self._valid_freq = valid_freq |
|
47
|
|
|
self._done = False |
|
48
|
|
|
self._lr = learning_rate |
|
49
|
|
|
self._easgd_alpha = easgd_alpha |
|
50
|
|
|
self._training_names = [] |
|
51
|
|
|
self._evaluation_names = [] |
|
52
|
|
|
self._best_valid_cost = sys.float_info.max |
|
53
|
|
|
self._lock = Lock() |
|
54
|
|
|
|
|
55
|
|
|
self.num_train_batches = 0 |
|
56
|
|
|
self.batch_pool = [] |
|
57
|
|
|
self._train_costs = [] |
|
58
|
|
|
self.prepared_worker_pool = set() |
|
59
|
|
|
logging.info("multi-gpu server is listening port {}".format(port)) |
|
60
|
|
|
|
|
61
|
|
|
def prepare_epoch(self): |
|
62
|
|
|
""" |
|
63
|
|
|
Prepare for one epoch. |
|
64
|
|
|
Returns: |
|
65
|
|
|
bool: False if to stop the training. |
|
66
|
|
|
""" |
|
67
|
|
|
self.epoch += 1 |
|
68
|
|
|
if self.epoch >= self.epoch_start_halving: |
|
69
|
|
|
self._lr *= 0.5 |
|
70
|
|
|
self._current_iter = 0 |
|
71
|
|
|
self._iters_from_last_valid = 0 |
|
72
|
|
|
self._train_costs = [] |
|
73
|
|
|
self.prepared_worker_pool.clear() |
|
74
|
|
|
self.batch_pool = range(self.num_train_batches) |
|
75
|
|
|
self.rand.shuffle(self.batch_pool) |
|
76
|
|
|
if self.epoch > self.end_at: |
|
77
|
|
|
logging.info("Training is done, wait all workers to stop") |
|
78
|
|
|
return False |
|
79
|
|
|
else: |
|
80
|
|
|
logging.info("start epoch {} with lr={}".format(self.epoch, self._lr)) |
|
81
|
|
|
return True |
|
82
|
|
|
|
|
83
|
|
|
def feed_batches(self): |
|
84
|
|
|
if not self.batch_pool: |
|
85
|
|
|
return None |
|
86
|
|
|
else: |
|
87
|
|
|
batches = self.batch_pool[:self.step_len] |
|
88
|
|
|
self.batch_pool = self.batch_pool[self.step_len:] |
|
89
|
|
|
self._current_iter += len(batches) |
|
90
|
|
|
self._iters_from_last_valid += len(batches) |
|
91
|
|
|
return batches |
|
92
|
|
|
|
|
93
|
|
|
|
|
94
|
|
|
def feed_hyperparams(self): |
|
95
|
|
|
retval = { |
|
96
|
|
|
"epoch": self.epoch, |
|
97
|
|
|
"learning_rate": self._lr, |
|
98
|
|
|
"easgd_alpha": self._easgd_alpha |
|
99
|
|
|
} |
|
100
|
|
|
return retval |
|
101
|
|
|
|
|
102
|
|
|
def get_monitor_string(self, costs): |
|
103
|
|
|
return " ".join(["{}={:.2f}".format(n, c) for (n, c) in costs]) |
|
104
|
|
|
|
|
105
|
|
|
|
|
106
|
|
|
def handle_control(self, req, worker_id): |
|
107
|
|
|
""" |
|
108
|
|
|
Handles a control_request received from a worker. |
|
109
|
|
|
Returns: |
|
110
|
|
|
string or dict: response |
|
111
|
|
|
|
|
112
|
|
|
'stop' - the worker should quit |
|
113
|
|
|
'wait' - wait for 1 second |
|
114
|
|
|
'eval' - evaluate on valid and test set to start a new epoch |
|
115
|
|
|
'sync_hyperparams' - set learning rate |
|
116
|
|
|
'valid' - evaluate on valid and test set, then save the params |
|
117
|
|
|
'train' - train next batches |
|
118
|
|
|
""" |
|
119
|
|
|
if self.start_time is None: self.start_time = time.time() |
|
120
|
|
|
response = "" |
|
121
|
|
|
|
|
122
|
|
|
if req == 'next': |
|
123
|
|
|
if self.num_train_batches == 0: |
|
124
|
|
|
response = "get_num_batches" |
|
125
|
|
|
elif self._done: |
|
126
|
|
|
response = "stop" |
|
127
|
|
|
self.worker_is_done(worker_id) |
|
128
|
|
|
elif self._evaluating: |
|
129
|
|
|
response = 'wait' |
|
130
|
|
|
elif not self.batch_pool: |
|
131
|
|
|
# End of one iter |
|
132
|
|
|
if self._train_costs: |
|
133
|
|
|
with self._lock: |
|
134
|
|
|
sys.stdout.write("\r") |
|
135
|
|
|
sys.stdout.flush() |
|
136
|
|
|
mean_costs = [] |
|
137
|
|
|
for i in range(len(self._training_names)): |
|
138
|
|
|
mean_costs.append(np.mean([c[i] for c in self._train_costs])) |
|
139
|
|
|
logging.info("train (epoch={:2d}) {}".format( |
|
140
|
|
|
self.epoch, |
|
141
|
|
|
self.get_monitor_string(zip(self._training_names, mean_costs))) |
|
142
|
|
|
) |
|
143
|
|
|
response = {'eval': None, 'best_valid_cost': self._best_valid_cost} |
|
144
|
|
|
self._evaluating = True |
|
145
|
|
|
else: |
|
146
|
|
|
# Continue training |
|
147
|
|
|
if worker_id not in self.prepared_worker_pool: |
|
148
|
|
|
response = {"sync_hyperparams": self.feed_hyperparams()} |
|
149
|
|
|
self.prepared_worker_pool.add(worker_id) |
|
150
|
|
|
elif self._iters_from_last_valid >= self._valid_freq: |
|
151
|
|
|
response = {'valid': None, 'best_valid_cost': self._best_valid_cost} |
|
152
|
|
|
self._iters_from_last_valid = 0 |
|
153
|
|
|
else: |
|
154
|
|
|
response = {"train": self.feed_batches()} |
|
155
|
|
|
elif 'eval_done' in req: |
|
156
|
|
|
with self._lock: |
|
157
|
|
|
self._evaluating = False |
|
158
|
|
|
sys.stdout.write("\r") |
|
159
|
|
|
sys.stdout.flush() |
|
160
|
|
|
if 'test_costs' in req: |
|
161
|
|
|
logging.info("test (epoch={:2d}) {}".format( |
|
162
|
|
|
self.epoch, |
|
163
|
|
|
self.get_monitor_string(req['test_costs'])) |
|
164
|
|
|
) |
|
165
|
|
|
if 'valid_costs' in req: |
|
166
|
|
|
valid_J = req['valid_costs'][0][1] |
|
167
|
|
|
if valid_J < self._best_valid_cost: |
|
168
|
|
|
self._best_valid_cost = valid_J |
|
169
|
|
|
star_str = "*" |
|
170
|
|
|
else: |
|
171
|
|
|
star_str = "" |
|
172
|
|
|
logging.info("valid (epoch={:2d}) {} {}".format( |
|
173
|
|
|
self.epoch, |
|
174
|
|
|
self.get_monitor_string(req['valid_costs']), |
|
175
|
|
|
star_str)) |
|
176
|
|
|
continue_training = self.prepare_epoch() |
|
177
|
|
|
if not continue_training: |
|
178
|
|
|
self._done = True |
|
179
|
|
|
logging.info("training time {:.4f}s".format(time.time() - self.start_time)) |
|
180
|
|
|
response = "stop" |
|
181
|
|
|
elif 'valid_done' in req: |
|
182
|
|
|
with self._lock: |
|
183
|
|
|
sys.stdout.write("\r") |
|
184
|
|
|
sys.stdout.flush() |
|
185
|
|
|
if 'valid_costs' in req: |
|
186
|
|
|
valid_J = req['valid_costs'][0][1] |
|
187
|
|
|
if valid_J < self._best_valid_cost: |
|
188
|
|
|
self._best_valid_cost = valid_J |
|
189
|
|
|
star_str = "*" |
|
190
|
|
|
else: |
|
191
|
|
|
star_str = "" |
|
192
|
|
|
logging.info("valid ( dryrun ) {} {}".format( |
|
193
|
|
|
self.get_monitor_string(req['valid_costs']), |
|
194
|
|
|
star_str |
|
195
|
|
|
)) |
|
196
|
|
|
elif 'train_done' in req: |
|
197
|
|
|
costs = req['costs'] |
|
198
|
|
|
self._train_costs.append(costs) |
|
199
|
|
|
sys.stdout.write("\x1b[2K\r> %d%% | J=%.2f" % (self._current_iter * 100 / self.num_train_batches, |
|
200
|
|
|
costs[0])) |
|
201
|
|
|
sys.stdout.flush() |
|
202
|
|
|
elif 'get_num_batches_done' in req: |
|
203
|
|
|
self.num_train_batches = req['get_num_batches_done'] |
|
204
|
|
|
elif 'get_easgd_alpha' in req: |
|
205
|
|
|
response = self._easgd_alpha |
|
206
|
|
|
elif 'sync_hyperparams' in req: |
|
207
|
|
|
response = {"sync_hyperparams": self.feed_hyperparams()} |
|
208
|
|
|
elif 'set_names' in req: |
|
209
|
|
|
self._training_names = req['training_names'] |
|
210
|
|
|
self._evaluation_names = req['evaluation_names'] |
|
211
|
|
|
|
|
212
|
|
|
return response |
|
213
|
|
|
|
|
214
|
|
|
if __name__ == '__main__': |
|
215
|
|
|
ap = ArgumentParser() |
|
216
|
|
|
ap.add_argument("--port", type=int, default=5567) |
|
217
|
|
|
ap.add_argument("--learning_rate", type=float, default=0.01) |
|
218
|
|
|
ap.add_argument("--start_halving_at", type=int, default=5) |
|
219
|
|
|
ap.add_argument("--end_at", type=int, default=10) |
|
220
|
|
|
ap.add_argument("--step_len", type=int, default=10) |
|
221
|
|
|
ap.add_argument("--valid_freq", type=int, default=1500) |
|
222
|
|
|
ap.add_argument("--easgd_alpha", type=float, default=0.5) |
|
223
|
|
|
args = ap.parse_args() |
|
224
|
|
|
|
|
225
|
|
|
server = ScheduledTrainingServer( |
|
226
|
|
|
port=args.port, learning_rate=args.learning_rate, |
|
227
|
|
|
start_halving_at=args.start_halving_at, |
|
228
|
|
|
end_at=args.end_at, |
|
229
|
|
|
step_len=args.step_len, |
|
230
|
|
|
valid_freq=args.valid_freq, |
|
231
|
|
|
easgd_alpha=args.easgd_alpha) |
|
232
|
|
|
server.serve() |
|
233
|
|
|
|