Completed
Push — master ( 5937d6...900a69 )
by Raphael
01:44
created

RecurrentLayer   B

Complexity

Total Complexity 38

Size/Duplication

Total Lines 142
Duplicated Lines 0 %

Importance

Changes 2
Bugs 1 Features 0
Metric Value
dl 0
loc 142
rs 8.3999
c 2
b 1
f 0
wmc 38

9 Methods

Rating   Name   Duplication   Size   Complexity  
A compute_new_state() 0 6 1
C __init__() 0 26 7
A merge_inputs() 0 8 1
A prepare() 0 3 1
A step() 0 11 3
C get_step_inputs() 0 22 7
A get_initial_states() 0 14 4
A compute() 0 4 4
F compute_tensor() 0 37 10
1
#!/usr/bin/env python
2
# -*- coding: utf-8 -*-
3
4
from . import NeuralLayer
5
from neural_var import NeuralVariable
6
from deepy.utils import build_activation, FLOATX, XavierGlorotInitializer, OrthogonalInitializer, Scanner, neural_computation
7
import numpy as np
8
import theano.tensor as T
9
from abc import ABCMeta, abstractmethod
10
11
OUTPUT_TYPES = ["sequence", "one"]
12
INPUT_TYPES = ["sequence", "one"]
13
14
15
16
class RecurrentLayer(NeuralLayer):
17
    __metaclass__ = ABCMeta
18
19
    def __init__(self, name, state_names, hidden_size=100, input_type="sequence", output_type="sequence",
20
                 inner_init=None, outer_init=None,
21
                 gate_activation='sigmoid', activation='tanh',
22
                 steps=None, backward=False, mask=None,
23
                 additional_input_dims=None):
24
        super(RecurrentLayer, self).__init__(name)
25
        self.state_names = state_names
26
        self.main_state = state_names[0]
27
        self.hidden_size = hidden_size
28
        self._gate_activation = gate_activation
29
        self._activation = activation
30
        self.gate_activate = build_activation(self._gate_activation)
31
        self.activate = build_activation(self._activation)
32
        self._input_type = input_type
33
        self._output_type = output_type
34
        self.inner_init = inner_init if inner_init else OrthogonalInitializer()
35
        self.outer_init = outer_init if outer_init else XavierGlorotInitializer()
36
        self._steps = steps
37
        self._mask = mask.tensor if type(mask) == NeuralVariable else mask
38
        self._go_backwards = backward
39
        self.additional_input_dims = additional_input_dims if additional_input_dims else []
40
41
        if input_type not in INPUT_TYPES:
42
            raise Exception("Input type of {} is wrong: {}".format(name, input_type))
43
        if output_type not in OUTPUT_TYPES:
44
            raise Exception("Output type of {} is wrong: {}".format(name, output_type))
45
46
    @neural_computation
47
    def step(self, step_inputs):
48
        new_states = self.compute_new_state(step_inputs)
49
50
        # apply mask for each step if `output_type` is 'one'
51
        if step_inputs.get("mask"):
52
            mask = step_inputs["mask"].dimshuffle(0, 'x')
53
            for state_name in new_states:
54
                new_states[state_name] = new_states[state_name] * mask + step_inputs[state_name] * (1 - mask)
55
56
        return new_states
57
58
    @abstractmethod
59
    def compute_new_state(self, step_inputs):
60
        """
61
        :type step_inputs: dict
62
        :rtype: dict
63
        """
64
65
    @abstractmethod
66
    def merge_inputs(self, input_var, additional_inputs=None):
67
        """
68
        Merge inputs and return a map, which will be passed to core_step.
69
        :type input_var: T.var
70
        :param additional_inputs: list
71
        :rtype: dict
72
        """
73
74
    @abstractmethod
75
    def prepare(self):
76
        pass
77
78
    @neural_computation
79
    def get_initial_states(self, input_var):
80
        """
81
        :type input_var: T.var
82
        :rtype: dict
83
        """
84
        initial_states = {}
85
        for state in self.state_names:
86
            if self._input_type == 'sequence' and input_var.ndim == 2:
87
                init_state = T.alloc(np.cast[FLOATX](0.), self.hidden_size)
88
            else:
89
                init_state = T.alloc(np.cast[FLOATX](0.), input_var.shape[0], self.hidden_size)
90
            initial_states[state] = init_state
91
        return initial_states
92
93
    @neural_computation
94
    def get_step_inputs(self, input_var, states=None, mask=None, additional_inputs=None):
95
        """
96
        :type input_var: T.var
97
        :rtype: dict
98
        """
99
        step_inputs = {}
100
        if self._input_type == "sequence":
101
            if not additional_inputs:
102
                additional_inputs = []
103
            if mask:
104
                step_inputs['mask'] = mask.dimshuffle(1, 0)
105
            step_inputs.update(self.merge_inputs(input_var, additional_inputs=additional_inputs))
106
        else:
107
            # step_inputs["mask"] = mask.dimshuffle((1,0)) if mask else None
108
            if additional_inputs:
109
                step_inputs.update(self.merge_inputs(None, additional_inputs=additional_inputs))
110
        if states:
111
            for name in self.state_names:
112
                step_inputs[name] = states[name]
113
114
        return step_inputs
115
116
    def compute(self, input_var, mask=None, additional_inputs=None, steps=None, backward=False):
117
        if additional_inputs and not self.additional_input_dims:
118
            self.additional_input_dims = map(lambda var: var.dim(), additional_inputs)
119
        return super(RecurrentLayer, self).compute(input_var, mask=mask, additional_inputs=additional_inputs, steps=steps, backward=backward)
120
121
    def compute_tensor(self, input_var, mask=None, additional_inputs=None, steps=None, backward=False):
122
        # prepare parameters
123
        backward = backward if backward else self._go_backwards
124
        steps = steps if steps else self._steps
125
        mask = mask if mask else self._mask
126
        if mask and self._input_type == "one":
127
            raise Exception("Mask only works with sequence input")
128
        # get initial states
129
        init_state_map = self.get_initial_states(input_var)
130
        # get input sequence map
131
        if self._input_type == "sequence":
132
            # Move middle dimension to left-most position
133
            # (sequence, batch, value)
134
            if input_var.ndim == 3:
135
                input_var = input_var.dimshuffle((1,0,2))
136
137
            seq_map = self.get_step_inputs(input_var, mask=mask, additional_inputs=additional_inputs)
138
        else:
139
            init_state_map[self.main_state] = input_var
140
            seq_map = self.get_step_inputs(None, mask=mask, additional_inputs=additional_inputs)
141
        # scan
142
        retval_map, _ = Scanner(
143
            self.step,
144
            sequences=seq_map,
145
            outputs_info=init_state_map,
146
            n_steps=steps,
147
            go_backwards=backward
148
        ).compute()
149
        # return main states
150
        main_states = retval_map[self.main_state]
151
        if self._output_type == "one":
152
            return main_states[-1]
153
        elif self._output_type == "sequence":
154
            main_states = main_states.dimshuffle((1,0,2)) # ~ batch, time, size
155
            # if mask: # ~ batch, time
156
            #     main_states *= mask.dimshuffle((0, 1, 'x'))
157
            return main_states
158
159
160
class RNN(RecurrentLayer):
161
162
    def  __init__(self, hidden_size, **kwargs):
163
        kwargs["hidden_size"] = hidden_size
164
        super(RNN, self).__init__("RNN", ["state"], **kwargs)
165
166
    @neural_computation
167
    def compute_new_state(self, step_inputs):
168
        xh_t, h_tm1 = map(step_inputs.get, ["xh_t", "state"])
169
        if not xh_t:
170
            xh_t = 0
171
172
        h_t = self.activate(xh_t + T.dot(h_tm1, self.W_h) + self.b_h)
173
174
        return {"state": h_t}
175
176
    @neural_computation
177
    def merge_inputs(self, input_var, additional_inputs=None):
178
        if not additional_inputs:
179
            additional_inputs = []
180
        all_inputs = ([input_var] if input_var else []) + additional_inputs
181
        h_inputs = []
182
        for x, weights in zip(all_inputs, self.input_weights):
183
            wi, = weights
184
            h_inputs.append(T.dot(x, wi))
185
        merged_inputs = {
186
            "xh_t": sum(h_inputs)
187
        }
188
        return merged_inputs
189
190
    def prepare(self):
191
        self.output_dim = self.hidden_size
192
193
        self.W_h = self.create_weight(self.hidden_size, self.hidden_size, "h", initializer=self.outer_init)
194
        self.b_h = self.create_bias(self.hidden_size, "h")
195
196
        self.register_parameters(self.W_h, self.b_h)
197
198
        self.input_weights = []
199
        if self._input_type == "sequence":
200
            normal_input_dims = [self.input_dim]
201
        else:
202
            normal_input_dims = []
203
204
        all_input_dims = normal_input_dims + self.additional_input_dims
205
        for i, input_dim in enumerate(all_input_dims):
206
            wi = self.create_weight(input_dim, self.hidden_size, "wi_{}".format(i+1), initializer=self.outer_init)
207
            weights = [wi]
208
            self.input_weights.append(weights)
209
            self.register_parameters(*weights)