|
1
|
|
|
#!/usr/bin/env python |
|
2
|
|
|
# -*- coding: utf-8 -*- |
|
3
|
|
|
|
|
4
|
|
|
import os |
|
5
|
|
|
import numpy as np |
|
6
|
|
|
import pickle |
|
7
|
|
|
import gzip |
|
8
|
|
|
from inspect import getargspec |
|
9
|
|
|
from env import env |
|
10
|
|
|
import theano |
|
11
|
|
|
import theano.tensor as TT |
|
12
|
|
|
import logging as loggers |
|
13
|
|
|
from tensor_conversion import neural_computation |
|
14
|
|
|
from disconnected_grad import disconnected_grad |
|
15
|
|
|
from deepy.utils import Scanner |
|
16
|
|
|
logging = loggers.getLogger(__name__) |
|
17
|
|
|
|
|
18
|
|
|
|
|
19
|
|
|
class GraphBuilder(object): |
|
20
|
|
|
""" |
|
21
|
|
|
Tool for creating computational graph in deepy. |
|
22
|
|
|
""" |
|
23
|
|
|
|
|
24
|
|
|
def __init__(self): |
|
25
|
|
|
self._default_block = self.new_block("default_block") |
|
26
|
|
|
|
|
27
|
|
|
def default_block(self): |
|
28
|
|
|
""" |
|
29
|
|
|
Return the default block. |
|
30
|
|
|
""" |
|
31
|
|
|
return self._default_block |
|
32
|
|
|
|
|
33
|
|
|
def collect_parameters(self): |
|
34
|
|
|
""" |
|
35
|
|
|
Return the default block, as all parameters will be registered to the default one. |
|
36
|
|
|
""" |
|
37
|
|
|
return self._default_block |
|
38
|
|
|
|
|
39
|
|
|
def new_block(self, *layers, **kwargs): |
|
40
|
|
|
""" |
|
41
|
|
|
Create a parameters block. |
|
42
|
|
|
:param layers: register some layers in the block |
|
43
|
|
|
:param name: specify the name of this block |
|
44
|
|
|
""" |
|
45
|
|
|
from deepy.layers.block import Block |
|
46
|
|
|
block = Block(*layers, **kwargs) |
|
47
|
|
|
return block |
|
48
|
|
|
|
|
49
|
|
|
def var(self, tensor_type, last_dim=0, test_shape=None): |
|
50
|
|
|
""" |
|
51
|
|
|
An alias of deepy.tensor.var. |
|
52
|
|
|
""" |
|
53
|
|
|
from deepy.tensor import var |
|
54
|
|
|
return var(tensor_type, last_dim=last_dim, test_shape=test_shape) |
|
55
|
|
|
|
|
56
|
|
|
def create_vars_from_data(self, dataset, split="train"): |
|
57
|
|
|
""" |
|
58
|
|
|
Create vars given a dataset and set test values. |
|
59
|
|
|
Useful when dataset is already defined. |
|
60
|
|
|
""" |
|
61
|
|
|
from deepy.core.neural_var import NeuralVariable |
|
62
|
|
|
vars = [] |
|
63
|
|
|
if split == "valid": |
|
64
|
|
|
data_split = dataset.valid_set() |
|
65
|
|
|
elif split == "test": |
|
66
|
|
|
data_split = dataset.test_set() |
|
67
|
|
|
else: |
|
68
|
|
|
data_split = dataset.train_set() |
|
69
|
|
|
first_data_piece = list(data_split)[0] |
|
70
|
|
|
for i, numpy_tensor in enumerate(first_data_piece): |
|
71
|
|
|
if numpy_tensor.dtype == "int64": |
|
72
|
|
|
numpy_tensor = numpy_tensor.astype("int32") |
|
73
|
|
|
if numpy_tensor.dtype == "float64": |
|
74
|
|
|
numpy_tensor = numpy_tensor.astype(env.FLOATX) |
|
75
|
|
|
type_map = { |
|
76
|
|
|
0: "scalar", |
|
77
|
|
|
1: "vector", |
|
78
|
|
|
2: "matrix", |
|
79
|
|
|
3: "tensor3", |
|
80
|
|
|
4: "tensor4", |
|
81
|
|
|
5: "tensor5", |
|
82
|
|
|
} |
|
83
|
|
|
tensor_type = type_map[numpy_tensor.ndim] if numpy_tensor.ndim in type_map else type_map[0] |
|
84
|
|
|
if numpy_tensor.dtype.kind == "i": |
|
85
|
|
|
tensor_type = "i" + tensor_type |
|
86
|
|
|
theano_tensor = getattr(TT, tensor_type)("input_{}_{}".format(i + 1, tensor_type)) |
|
87
|
|
|
last_dim = numpy_tensor.shape[-1] |
|
88
|
|
|
var = NeuralVariable(theano_tensor, dim=last_dim) |
|
89
|
|
|
var.set_test_value(numpy_tensor) |
|
90
|
|
|
vars.append(var) |
|
91
|
|
|
return vars |
|
92
|
|
|
|
|
93
|
|
|
@neural_computation |
|
94
|
|
|
def scan(self, func, sequences=None, outputs=None, non_sequences=None, block=None, **kwargs): |
|
95
|
|
|
""" |
|
96
|
|
|
A loop function, the usage is identical with the theano one. |
|
97
|
|
|
:type block: deepy.layers.Block |
|
98
|
|
|
""" |
|
99
|
|
|
results, updates = Scanner(func, sequences, outputs, non_sequences, neural_computation=True, **kwargs).compute() |
|
100
|
|
|
if block and updates: |
|
101
|
|
|
if type(updates) == dict: |
|
102
|
|
|
updates = updates.items() |
|
103
|
|
|
block.register_updates(*updates) |
|
104
|
|
|
return results |
|
105
|
|
|
|
|
106
|
|
|
def loop(self, sequences=None, outputs=None, non_sequences=None, block=None, **kwargs): |
|
107
|
|
|
""" |
|
108
|
|
|
Start a loop. |
|
109
|
|
|
Usage: |
|
110
|
|
|
``` |
|
111
|
|
|
with deepy.graph.loop(sequences={"x": x}, outputs={"o": None}) as vars: |
|
112
|
|
|
vars.o = vars.x + 1 |
|
113
|
|
|
loop_outputs = deepy.graph.loop_outputs() |
|
114
|
|
|
result = loop_outputs.o |
|
115
|
|
|
``` |
|
116
|
|
|
""" |
|
117
|
|
|
from loop import Loop |
|
118
|
|
|
return Loop(sequences, outputs, non_sequences, block, **kwargs) |
|
119
|
|
|
|
|
120
|
|
|
def get_trainer(self, model, method='sgd', config=None, annealer=None, validator=None): |
|
121
|
|
|
""" |
|
122
|
|
|
Get a trainer to optimize given model. |
|
123
|
|
|
:rtype: deepy.trainers.GeneralNeuralTrainer |
|
124
|
|
|
""" |
|
125
|
|
|
from deepy.trainers import GeneralNeuralTrainer |
|
126
|
|
|
return GeneralNeuralTrainer(model, method=method, config=config, annealer=annealer, validator=validator) |
|
127
|
|
|
|
|
128
|
|
|
@neural_computation |
|
129
|
|
|
def shared(self, value, name=None): |
|
130
|
|
|
""" |
|
131
|
|
|
Create a shared theano scalar value. |
|
132
|
|
|
""" |
|
133
|
|
|
if type(value) == int: |
|
134
|
|
|
final_value = np.array(value, dtype="int32") |
|
135
|
|
|
elif type(value) == float: |
|
136
|
|
|
final_value = np.array(value, dtype=env.FLOATX) |
|
137
|
|
|
else: |
|
138
|
|
|
final_value = value |
|
139
|
|
|
|
|
140
|
|
|
return theano.shared(final_value, name=name) |
|
141
|
|
|
|
|
142
|
|
|
@neural_computation |
|
143
|
|
|
def disconnect(self, x): |
|
144
|
|
|
""" |
|
145
|
|
|
Disconnect a variable from backpropagation. |
|
146
|
|
|
""" |
|
147
|
|
|
return disconnected_grad(x) |
|
148
|
|
|
|
|
149
|
|
|
def compile(self, input_dim=0, model=None, input_tensor=None, monitors=None, |
|
150
|
|
|
cost=None, output=None, outputs=None, blocks=None, input_vars=None, target_vars=None): |
|
151
|
|
|
from comp_graph import ComputationalGraph |
|
152
|
|
|
# Pass the arguments to `ComputationalGraph` |
|
153
|
|
|
args = [arg for arg in getargspec(GraphBuilder.compile).args if arg != "self"] |
|
154
|
|
|
arg_vals = [locals()[k] for k in args] |
|
155
|
|
|
kwargs = dict(zip(args, arg_vals)) |
|
156
|
|
|
return ComputationalGraph(**kwargs) |
|
157
|
|
|
|
|
158
|
|
|
def fill_parameters(self, path, blocks, exclude_free_params=False, check_parameters=False): |
|
159
|
|
|
""" |
|
160
|
|
|
Load parameters from file to fill all blocks sequentially. |
|
161
|
|
|
:type blocks: list of deepy.layers.Block |
|
162
|
|
|
""" |
|
163
|
|
|
if not os.path.exists(path): |
|
164
|
|
|
raise Exception("model {} does not exist".format(path)) |
|
165
|
|
|
# Decide which parameters to load |
|
166
|
|
|
normal_params = sum([nn.parameters for nn in blocks], []) |
|
167
|
|
|
all_params = sum([nn.all_parameters for nn in blocks], []) |
|
168
|
|
|
# Load parameters |
|
169
|
|
|
if path.endswith(".gz"): |
|
170
|
|
|
opener = gzip.open if path.lower().endswith('.gz') else open |
|
171
|
|
|
handle = opener(path, 'rb') |
|
172
|
|
|
saved_params = pickle.load(handle) |
|
173
|
|
|
handle.close() |
|
174
|
|
|
# Write parameters |
|
175
|
|
|
if len(all_params) != len(saved_params): |
|
176
|
|
|
logging.warning( |
|
177
|
|
|
"parameters in the network: {}, parameters in the dumped model: {}".format(len(all_params), |
|
178
|
|
|
len(saved_params))) |
|
179
|
|
|
for target, source in zip(all_params, saved_params): |
|
180
|
|
|
if not exclude_free_params or target not in normal_params: |
|
181
|
|
|
target.set_value(source) |
|
182
|
|
|
elif path.endswith(".npz"): |
|
183
|
|
|
arrs = np.load(path) |
|
184
|
|
|
# Write parameters |
|
185
|
|
|
if len(all_params) != len(arrs.keys()): |
|
186
|
|
|
logging.warning( |
|
187
|
|
|
"parameters in the network: {}, parameters in the dumped model: {}".format(len(all_params), |
|
188
|
|
|
len(arrs.keys()))) |
|
189
|
|
|
for target, idx in zip(all_params, range(len(arrs.keys()))): |
|
190
|
|
|
if not exclude_free_params or target not in normal_params: |
|
191
|
|
|
source = arrs['arr_%d' % idx] |
|
192
|
|
|
target.set_value(source) |
|
193
|
|
|
else: |
|
194
|
|
|
raise Exception("File format of %s is not supported, use '.gz' or '.npz' or '.uncompressed.gz'" % path) |
|
195
|
|
|
|
|
196
|
|
|
|
|
197
|
|
|
if "graph" not in globals(): |
|
198
|
|
|
graph = GraphBuilder() |
|
199
|
|
|
|