| Total Complexity | 79 |
| Total Lines | 307 |
| Duplicated Lines | 0 % |
Complex classes like deepy.trainers.NeuralTrainer often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | #!/usr/bin/env python |
||
| 16 | class NeuralTrainer(object): |
||
| 17 | """ |
||
| 18 | A base class for all trainers. |
||
| 19 | """ |
||
| 20 | __metaclass__ = ABCMeta |
||
| 21 | |||
| 22 | def __init__(self, network, config=None): |
||
| 23 | """ |
||
| 24 | Basic neural network trainer. |
||
| 25 | :type network: deepy.NeuralNetwork |
||
| 26 | :type config: deepy.conf.TrainerConfig |
||
| 27 | :return: |
||
| 28 | """ |
||
| 29 | super(NeuralTrainer, self).__init__() |
||
| 30 | |||
| 31 | self.config = None |
||
| 32 | if isinstance(config, TrainerConfig): |
||
| 33 | self.config = config |
||
| 34 | elif isinstance(config, dict): |
||
| 35 | self.config = TrainerConfig(config) |
||
| 36 | else: |
||
| 37 | self.config = TrainerConfig() |
||
| 38 | # Model and network all refer to the computational graph |
||
| 39 | self.model = self.network = network |
||
| 40 | |||
| 41 | self.network.prepare_training() |
||
| 42 | self._setup_costs() |
||
| 43 | |||
| 44 | self.evaluation_func = None |
||
| 45 | |||
| 46 | self.validation_frequency = self.config.validation_frequency |
||
| 47 | self.min_improvement = self.config.min_improvement |
||
| 48 | self.patience = self.config.patience |
||
| 49 | self._iter_callbacks = [] |
||
| 50 | |||
| 51 | self.best_cost = 1e100 |
||
| 52 | self.best_iter = 0 |
||
| 53 | self.best_params = self.copy_params() |
||
| 54 | self._skip_batches = 0 |
||
| 55 | self._progress = 0 |
||
| 56 | self.last_cost = 0 |
||
| 57 | |||
| 58 | def _compile_evaluation_func(self): |
||
| 59 | if not self.evaluation_func: |
||
| 60 | logging.info("compile evaluation function") |
||
| 61 | self.evaluation_func = theano.function( |
||
| 62 | self.network.input_variables + self.network.target_variables, |
||
| 63 | self.evaluation_variables, |
||
| 64 | updates=self.network.updates, |
||
| 65 | allow_input_downcast=True, mode=self.config.get("theano_mode", None)) |
||
| 66 | |||
| 67 | def skip(self, n_batches): |
||
| 68 | """ |
||
| 69 | Skip N batches in the training. |
||
| 70 | """ |
||
| 71 | logging.info("Skip %d batches" % n_batches) |
||
| 72 | self._skip_batches = n_batches |
||
| 73 | |||
| 74 | def _setup_costs(self): |
||
| 75 | self.cost = self._add_regularization(self.network.cost) |
||
| 76 | self.test_cost = self._add_regularization(self.network.test_cost) |
||
| 77 | self.training_variables = [self.cost] |
||
| 78 | self.training_names = ['J'] |
||
| 79 | for name, monitor in self.network.training_monitors: |
||
| 80 | self.training_names.append(name) |
||
| 81 | self.training_variables.append(monitor) |
||
| 82 | logging.info("monitor list: %s" % ",".join(self.training_names)) |
||
| 83 | |||
| 84 | self.evaluation_variables = [self.test_cost] |
||
| 85 | self.evaluation_names = ['J'] |
||
| 86 | for name, monitor in self.network.testing_monitors: |
||
| 87 | self.evaluation_names.append(name) |
||
| 88 | self.evaluation_variables.append(monitor) |
||
| 89 | |||
| 90 | def _add_regularization(self, cost): |
||
| 91 | if self.config.weight_l1 > 0: |
||
| 92 | logging.info("L1 weight regularization: %f" % self.config.weight_l1) |
||
| 93 | cost += self.config.weight_l1 * sum(abs(w).sum() for w in self.network.parameters) |
||
| 94 | if self.config.hidden_l1 > 0: |
||
| 95 | logging.info("L1 hidden unit regularization: %f" % self.config.hidden_l1) |
||
| 96 | cost += self.config.hidden_l1 * sum(abs(h).mean(axis=0).sum() for h in self.network._hidden_outputs) |
||
| 97 | if self.config.hidden_l2 > 0: |
||
| 98 | logging.info("L2 hidden unit regularization: %f" % self.config.hidden_l2) |
||
| 99 | cost += self.config.hidden_l2 * sum((h * h).mean(axis=0).sum() for h in self.network._hidden_outputs) |
||
| 100 | |||
| 101 | return cost |
||
| 102 | |||
| 103 | def set_params(self, targets, free_params=None): |
||
| 104 | for param, target in zip(self.network.parameters, targets): |
||
| 105 | param.set_value(target) |
||
| 106 | if free_params: |
||
| 107 | for param, param_value in zip(self.network.free_parameters, free_params): |
||
| 108 | param.set_value(param_value) |
||
| 109 | |||
| 110 | def save_params(self, path): |
||
| 111 | self.set_params(*self.best_params) |
||
| 112 | self.network.save_params(path) |
||
| 113 | |||
| 114 | def load_params(self, path, exclude_free_params=False): |
||
| 115 | """ |
||
| 116 | Load parameters for the training. |
||
| 117 | This method can load free parameters and resume the training progress. |
||
| 118 | """ |
||
| 119 | self.network.load_params(path, exclude_free_params=exclude_free_params) |
||
| 120 | self.best_params = self.copy_params() |
||
| 121 | # Resume the progress |
||
| 122 | if self.network.train_logger.progress() > 0: |
||
| 123 | self.skip(self.network.train_logger.progress()) |
||
| 124 | |||
| 125 | def copy_params(self): |
||
| 126 | checkpoint = (map(lambda p: p.get_value().copy(), self.network.parameters), |
||
| 127 | map(lambda p: p.get_value().copy(), self.network.free_parameters)) |
||
| 128 | return checkpoint |
||
| 129 | |||
| 130 | def add_iter_callback(self, func): |
||
| 131 | """ |
||
| 132 | Add a iteration callback function (receives an argument of the trainer). |
||
| 133 | :return: |
||
| 134 | """ |
||
| 135 | self._iter_callbacks.append(func) |
||
| 136 | |||
| 137 | def train(self, train_set, valid_set=None, test_set=None, train_size=None): |
||
| 138 | """ |
||
| 139 | Train the model and return costs. |
||
| 140 | """ |
||
| 141 | iteration = 0 |
||
| 142 | while True: |
||
| 143 | # Test |
||
| 144 | if not iteration % self.config.test_frequency and test_set: |
||
| 145 | try: |
||
| 146 | self._run_test(iteration, test_set) |
||
| 147 | except KeyboardInterrupt: |
||
| 148 | logging.info('interrupted!') |
||
| 149 | break |
||
| 150 | # Validate |
||
| 151 | if not iteration % self.validation_frequency and valid_set: |
||
| 152 | try: |
||
| 153 | |||
| 154 | if not self._run_valid(iteration, valid_set): |
||
| 155 | logging.info('patience elapsed, bailing out') |
||
| 156 | break |
||
| 157 | except KeyboardInterrupt: |
||
| 158 | logging.info('interrupted!') |
||
| 159 | break |
||
| 160 | # Train one step |
||
| 161 | try: |
||
| 162 | costs = self._run_train(iteration, train_set, train_size) |
||
| 163 | except KeyboardInterrupt: |
||
| 164 | logging.info('interrupted!') |
||
| 165 | break |
||
| 166 | # Check costs |
||
| 167 | if np.isnan(costs[0][1]): |
||
| 168 | logging.info("NaN detected in costs, rollback to last parameters") |
||
| 169 | self.set_params(*self.checkpoint) |
||
| 170 | else: |
||
| 171 | iteration += 1 |
||
| 172 | self.network.epoch_callback() |
||
| 173 | |||
| 174 | yield dict(costs) |
||
| 175 | |||
| 176 | if valid_set and self.config.get("save_best_parameters", True): |
||
| 177 | self.set_params(*self.best_params) |
||
| 178 | if test_set: |
||
| 179 | self._run_test(-1, test_set) |
||
| 180 | |||
| 181 | @abstractmethod |
||
| 182 | def learn(self, *variables): |
||
| 183 | """ |
||
| 184 | Update the parameters and return the cost with given data points. |
||
| 185 | :param variables: |
||
| 186 | :return: |
||
| 187 | """ |
||
| 188 | |||
| 189 | def _run_test(self, iteration, test_set): |
||
| 190 | """ |
||
| 191 | Run on test iteration. |
||
| 192 | """ |
||
| 193 | costs = self.test_step(test_set) |
||
| 194 | info = ' '.join('%s=%.2f' % el for el in costs) |
||
| 195 | message = "test (iter=%i) %s" % (iteration + 1, info) |
||
| 196 | logging.info(message) |
||
| 197 | self.network.train_logger.record(message) |
||
| 198 | |||
| 199 | def _run_train(self, iteration, train_set, train_size=None): |
||
| 200 | """ |
||
| 201 | Run one training iteration. |
||
| 202 | """ |
||
| 203 | costs = self.train_step(train_set, train_size) |
||
| 204 | |||
| 205 | if not iteration % self.config.monitor_frequency: |
||
| 206 | info = " ".join("%s=%.2f" % item for item in costs) |
||
| 207 | message = "monitor (iter=%i) %s" % (iteration + 1, info) |
||
| 208 | logging.info(message) |
||
| 209 | self.network.train_logger.record(message) |
||
| 210 | return costs |
||
| 211 | |||
| 212 | def _run_valid(self, iteration, valid_set, dry_run=False): |
||
| 213 | """ |
||
| 214 | Run one valid iteration, return true if to continue training. |
||
| 215 | """ |
||
| 216 | costs = self.valid_step(valid_set) |
||
| 217 | # this is the same as: (J_i - J_f) / J_i > min improvement |
||
| 218 | _, J = costs[0] |
||
| 219 | marker = "" |
||
| 220 | if self.best_cost - J > self.best_cost * self.min_improvement: |
||
| 221 | # save the best cost and parameters |
||
| 222 | self.best_params = self.copy_params() |
||
| 223 | marker = ' *' |
||
| 224 | if not dry_run: |
||
| 225 | self.best_cost = J |
||
| 226 | self.best_iter = iteration |
||
| 227 | |||
| 228 | if self.config.auto_save: |
||
| 229 | self.network.train_logger.record_progress(self._progress) |
||
| 230 | self.network.save_params(self.config.auto_save, new_thread=True) |
||
| 231 | |||
| 232 | info = ' '.join('%s=%.2f' % el for el in costs) |
||
| 233 | iter_str = "iter=%d" % (iteration + 1) |
||
| 234 | if dry_run: |
||
| 235 | iter_str = "dryrun" + " " * (len(iter_str) - 6) |
||
| 236 | message = "valid (%s) %s%s" % (iter_str, info, marker) |
||
| 237 | logging.info(message) |
||
| 238 | self.network.train_logger.record(message) |
||
| 239 | self.checkpoint = self.copy_params() |
||
| 240 | return iteration - self.best_iter < self.patience |
||
| 241 | |||
| 242 | def test_step(self, test_set): |
||
| 243 | self._compile_evaluation_func() |
||
| 244 | costs = list(zip( |
||
| 245 | self.evaluation_names, |
||
| 246 | np.mean([self.evaluation_func(*x) for x in test_set], axis=0))) |
||
| 247 | return costs |
||
| 248 | |||
| 249 | def valid_step(self, valid_set): |
||
| 250 | self._compile_evaluation_func() |
||
| 251 | costs = list(zip( |
||
| 252 | self.evaluation_names, |
||
| 253 | np.mean([self.evaluation_func(*x) for x in valid_set], axis=0))) |
||
| 254 | return costs |
||
| 255 | |||
| 256 | def train_step(self, train_set, train_size=None): |
||
| 257 | dirty_trick_times = 0 |
||
| 258 | network_callback = bool(self.network.training_callbacks) |
||
| 259 | trainer_callback = bool(self._iter_callbacks) |
||
| 260 | cost_matrix = [] |
||
| 261 | self._progress = 0 |
||
| 262 | |||
| 263 | for x in train_set: |
||
| 264 | if self._skip_batches == 0: |
||
| 265 | |||
| 266 | if dirty_trick_times > 0: |
||
| 267 | cost_x = self.learn(*[t[:(t.shape[0]/2)] for t in x]) |
||
| 268 | cost_matrix.append(cost_x) |
||
| 269 | cost_x = self.learn(*[t[(t.shape[0]/2):] for t in x]) |
||
| 270 | dirty_trick_times -= 1 |
||
| 271 | else: |
||
| 272 | try: |
||
| 273 | cost_x = self.learn(*x) |
||
| 274 | except MemoryError: |
||
| 275 | logging.info("Memory error was detected, perform dirty trick 30 times") |
||
| 276 | dirty_trick_times = 30 |
||
| 277 | # Dirty trick |
||
| 278 | cost_x = self.learn(*[t[:(t.shape[0]/2)] for t in x]) |
||
| 279 | cost_matrix.append(cost_x) |
||
| 280 | cost_x = self.learn(*[t[(t.shape[0]/2):] for t in x]) |
||
| 281 | cost_matrix.append(cost_x) |
||
| 282 | self.last_cost = cost_x[0] |
||
| 283 | if network_callback: |
||
| 284 | self.network.training_callback() |
||
| 285 | if trainer_callback: |
||
| 286 | for func in self._iter_callbacks: |
||
| 287 | func(self) |
||
| 288 | else: |
||
| 289 | self._skip_batches -= 1 |
||
| 290 | if train_size: |
||
| 291 | self._progress += 1 |
||
| 292 | sys.stdout.write("\x1b[2K\r> %d%% | J=%.2f" % (self._progress * 100 / train_size, self.last_cost)) |
||
| 293 | sys.stdout.flush() |
||
| 294 | self._progress = 0 |
||
| 295 | |||
| 296 | if train_size: |
||
| 297 | sys.stdout.write("\r") |
||
| 298 | sys.stdout.flush() |
||
| 299 | costs = list(zip(self.training_names, np.mean(cost_matrix, axis=0))) |
||
| 300 | return costs |
||
| 301 | |||
| 302 | def run(self, train_set, valid_set=None, test_set=None, train_size=None, controllers=None): |
||
| 303 | """ |
||
| 304 | Run until the end. |
||
| 305 | """ |
||
| 306 | if isinstance(train_set, Dataset): |
||
| 307 | dataset = train_set |
||
| 308 | train_set = dataset.train_set() |
||
| 309 | valid_set = dataset.valid_set() |
||
| 310 | test_set = dataset.test_set() |
||
| 311 | train_size = dataset.train_size() |
||
| 312 | |||
| 313 | timer = Timer() |
||
| 314 | for _ in self.train(train_set, valid_set=valid_set, test_set=test_set, train_size=train_size): |
||
| 315 | if controllers: |
||
| 316 | ending = False |
||
| 317 | for controller in controllers: |
||
| 318 | if hasattr(controller, 'invoke') and controller.invoke(): |
||
| 319 | ending = True |
||
| 320 | if ending: |
||
| 321 | break |
||
| 322 | timer.report() |
||
| 323 | return |