Total Complexity | 45 |
Total Lines | 252 |
Duplicated Lines | 0 % |
Complex classes like deepy.networks.NeuralNetwork often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | #!/usr/bin/env python |
||
36 | class NeuralNetwork(object): |
||
37 | """ |
||
38 | The base class of neural networks. |
||
39 | """ |
||
40 | |||
41 | def __init__(self, input_dim, input_tensor=None): |
||
42 | logging.info(DEEPY_MESSAGE) |
||
43 | self.input_dim = input_dim |
||
44 | self.input_tensor = input_tensor |
||
45 | self.parameter_count = 0 |
||
46 | |||
47 | self.parameters = [] |
||
48 | self.free_parameters = [] |
||
49 | |||
50 | self.training_updates = [] |
||
51 | self.updates = [] |
||
52 | |||
53 | self.input_variables = [] |
||
54 | self.target_variables = [] |
||
55 | |||
56 | self.training_callbacks = [] |
||
57 | self.testing_callbacks = [] |
||
58 | self.epoch_callbacks = [] |
||
59 | |||
60 | self.layers = [] |
||
61 | |||
62 | self._hidden_outputs = [] |
||
63 | self.training_monitors = [] |
||
64 | self.testing_monitors = [] |
||
65 | |||
66 | self.setup_variables() |
||
67 | self.train_logger = TrainLogger() |
||
68 | |||
69 | def stack_layer(self, layer, no_setup=False): |
||
70 | """ |
||
71 | Stack a neural layer. |
||
72 | :type layer: NeuralLayer |
||
73 | :param no_setup: whether the layer is already initialized |
||
74 | """ |
||
75 | if layer.name: |
||
76 | layer.name += "%d" % (len(self.layers) + 1) |
||
77 | if not self.layers: |
||
78 | layer.initialize(self.input_dim, no_prepare=no_setup) |
||
79 | else: |
||
80 | layer.initialize(self.layers[-1].output_dim, no_prepare=no_setup) |
||
81 | self._output = layer.compute_tensor(self._output) |
||
82 | self._test_output = layer.compute_test_tesnor(self._test_output) |
||
83 | self._hidden_outputs.append(self._output) |
||
84 | self.register_layer(layer) |
||
85 | self.layers.append(layer) |
||
86 | |||
87 | def register(self, *layers): |
||
88 | """ |
||
89 | Register multiple layers as the components of the network. |
||
90 | The parameter of those layers will be trained. |
||
91 | But the output of the layer will not be stacked. |
||
92 | """ |
||
93 | for layer in layers: |
||
94 | self.register_layer(layer) |
||
95 | |||
96 | def register_layer(self, layer): |
||
97 | """ |
||
98 | Register the layer so that it's param will be trained. |
||
99 | But the output of the layer will not be stacked. |
||
100 | """ |
||
101 | if type(layer) == Block: |
||
102 | layer.fix() |
||
103 | self.parameter_count += layer.parameter_count |
||
104 | self.parameters.extend(layer.parameters) |
||
105 | self.free_parameters.extend(layer.free_parameters) |
||
106 | self.training_monitors.extend(layer.training_monitors) |
||
107 | self.testing_monitors.extend(layer.testing_monitors) |
||
108 | self.updates.extend(layer.updates) |
||
109 | self.training_updates.extend(layer.training_updates) |
||
110 | self.input_variables.extend(layer.external_inputs) |
||
111 | self.target_variables.extend(layer.external_targets) |
||
112 | |||
113 | self.training_callbacks.extend(layer.training_callbacks) |
||
114 | self.testing_callbacks.extend(layer.testing_callbacks) |
||
115 | self.epoch_callbacks.extend(layer.epoch_callbacks) |
||
116 | |||
117 | def first_layer(self): |
||
118 | """ |
||
119 | Return first layer. |
||
120 | """ |
||
121 | return self.layers[0] if self.layers else None |
||
122 | |||
123 | def stack(self, *layers): |
||
124 | """ |
||
125 | Stack layers. |
||
126 | """ |
||
127 | for layer in layers: |
||
128 | self.stack_layer(layer) |
||
129 | return self |
||
130 | |||
131 | def prepare_training(self): |
||
132 | """ |
||
133 | This function will be called before training. |
||
134 | """ |
||
135 | self.report() |
||
136 | |||
137 | def monitor_layer_outputs(self): |
||
138 | """ |
||
139 | Monitoring the outputs of each layer. |
||
140 | Useful for troubleshooting convergence problems. |
||
141 | """ |
||
142 | for layer, hidden in zip(self.layers, self._hidden_outputs): |
||
143 | self.training_monitors.append(('mean(%s)' % (layer.name), abs(hidden).mean())) |
||
144 | |||
145 | @property |
||
146 | def all_parameters(self): |
||
147 | """ |
||
148 | Return all parameters. |
||
149 | """ |
||
150 | params = [] |
||
151 | params.extend(self.parameters) |
||
152 | params.extend(self.free_parameters) |
||
153 | |||
154 | return params |
||
155 | |||
156 | def setup_variables(self): |
||
157 | """ |
||
158 | Set up variables. |
||
159 | """ |
||
160 | if self.input_tensor: |
||
161 | if type(self.input_tensor) == int: |
||
162 | x = dim_to_var(self.input_tensor, name="x") |
||
163 | else: |
||
164 | x = self.input_tensor |
||
165 | else: |
||
166 | x = T.matrix('x') |
||
167 | self.input_variables.append(x) |
||
168 | self._output = x |
||
169 | self._test_output = x |
||
170 | |||
171 | def _compile(self): |
||
172 | if not hasattr(self, '_compute'): |
||
173 | self._compute = theano.function( |
||
174 | filter(lambda x: x not in self.target_variables, self.input_variables), |
||
175 | self.test_output, updates=self.updates, allow_input_downcast=True) |
||
176 | |||
177 | def compute(self, *x): |
||
178 | """ |
||
179 | Return network output. |
||
180 | """ |
||
181 | self._compile() |
||
182 | return self._compute(*x) |
||
183 | |||
184 | @property |
||
185 | def output(self): |
||
186 | """ |
||
187 | Return output variable. |
||
188 | """ |
||
189 | return self._output |
||
190 | |||
191 | @property |
||
192 | def test_output(self): |
||
193 | """ |
||
194 | Return output variable in test time. |
||
195 | """ |
||
196 | return self._test_output |
||
197 | |||
198 | @property |
||
199 | def cost(self): |
||
200 | """ |
||
201 | Return cost variable. |
||
202 | """ |
||
203 | return T.constant(0) |
||
204 | |||
205 | @property |
||
206 | def test_cost(self): |
||
207 | """ |
||
208 | Return cost variable in test time. |
||
209 | """ |
||
210 | return self.cost |
||
211 | |||
212 | def save_params(self, path, new_thread=False): |
||
213 | """ |
||
214 | Save parameters to file. |
||
215 | """ |
||
216 | logging.info("saving parameters to %s" % path) |
||
217 | param_variables = self.all_parameters |
||
218 | params = [p.get_value().copy() for p in param_variables] |
||
219 | if new_thread: |
||
220 | thread = Thread(target=save_network_params, args=(params, path)) |
||
221 | thread.start() |
||
222 | else: |
||
223 | save_network_params(params, path) |
||
224 | self.train_logger.save(path) |
||
225 | |||
226 | def load_params(self, path, exclude_free_params=False): |
||
227 | """ |
||
228 | Load parameters from file. |
||
229 | """ |
||
230 | if not os.path.exists(path): return; |
||
231 | logging.info("loading parameters from %s" % path) |
||
232 | # Decide which parameters to load |
||
233 | if exclude_free_params: |
||
234 | params_to_load = self.parameters |
||
235 | else: |
||
236 | params_to_load = self.all_parameters |
||
237 | # Load parameters |
||
238 | if path.endswith(".gz"): |
||
239 | opener = gzip.open if path.lower().endswith('.gz') else open |
||
240 | handle = opener(path, 'rb') |
||
241 | saved_params = pickle.load(handle) |
||
242 | handle.close() |
||
243 | # Write parameters |
||
244 | for target, source in zip(params_to_load, saved_params): |
||
245 | logging.info('%s: setting value %s', target.name, source.shape) |
||
246 | target.set_value(source) |
||
247 | elif path.endswith(".npz"): |
||
248 | arrs = np.load(path) |
||
249 | # Write parameters |
||
250 | for target, idx in zip(params_to_load, range(len(arrs.keys()))): |
||
251 | source = arrs['arr_%d' % idx] |
||
252 | logging.info('%s: setting value %s', target.name, source.shape) |
||
253 | target.set_value(source) |
||
254 | else: |
||
255 | raise Exception("File format of %s is not supported, use '.gz' or '.npz' or '.uncompressed.gz'" % path) |
||
256 | |||
257 | self.train_logger.load(path) |
||
258 | |||
259 | def report(self): |
||
260 | """ |
||
261 | Print network statistics. |
||
262 | """ |
||
263 | logging.info("network inputs: %s", " ".join(map(str, self.input_variables))) |
||
264 | logging.info("network targets: %s", " ".join(map(str, self.target_variables))) |
||
265 | logging.info("network parameters: %s", " ".join(map(str, self.all_parameters))) |
||
266 | logging.info("parameter count: %d", self.parameter_count) |
||
267 | |||
268 | def epoch_callback(self): |
||
269 | """ |
||
270 | Callback for each epoch. |
||
271 | """ |
||
272 | for cb in self.epoch_callbacks: |
||
273 | cb() |
||
274 | |||
275 | def training_callback(self): |
||
276 | """ |
||
277 | Callback for each training iteration. |
||
278 | """ |
||
279 | for cb in self.training_callbacks: |
||
280 | cb() |
||
281 | |||
282 | def testing_callback(self): |
||
283 | """ |
||
284 | Callback for each testing iteration. |
||
285 | """ |
||
286 | for cb in self.training_callbacks: |
||
287 | cb() |
||
288 |