Completed
Push — master ( f73e69...91b7c0 )
by Raphael
01:35
created

RecurrentLayer   B

Complexity

Total Complexity 36

Size/Duplication

Total Lines 134
Duplicated Lines 0 %

Importance

Changes 1
Bugs 0 Features 0
Metric Value
dl 0
loc 134
rs 8.8
c 1
b 0
f 0
wmc 36

9 Methods

Rating   Name   Duplication   Size   Complexity  
A compute_new_state() 0 6 1
C __init__() 0 26 7
A merge_inputs() 0 8 1
A prepare() 0 3 1
B get_step_inputs() 0 20 6
A get_initial_states() 0 10 2
A compute() 0 4 4
A step() 0 11 4
F compute_tensor() 0 35 10
1
#!/usr/bin/env python
2
# -*- coding: utf-8 -*-
3
4
from . import NeuralLayer
5
from var import NeuralVariable
6
from deepy.utils import build_activation, FLOATX, XavierGlorotInitializer, OrthogonalInitializer, Scanner, neural_computation
7
import numpy as np
8
import theano.tensor as T
9
from abc import ABCMeta, abstractmethod
10
11
OUTPUT_TYPES = ["sequence", "one"]
12
INPUT_TYPES = ["sequence", "one"]
13
14
15
16
class RecurrentLayer(NeuralLayer):
17
    __metaclass__ = ABCMeta
18
19
    def __init__(self, name, state_names, hidden_size=100, input_type="sequence", output_type="sequence",
20
                 inner_init=None, outer_init=None,
21
                 gate_activation='sigmoid', activation='tanh',
22
                 steps=None, backward=False, mask=None,
23
                 additional_input_dims=None):
24
        super(RecurrentLayer, self).__init__(name)
25
        self.state_names = state_names
26
        self.main_state = state_names[0]
27
        self.hidden_size = hidden_size
28
        self._gate_activation = gate_activation
29
        self._activation = activation
30
        self.gate_activate = build_activation(self._gate_activation)
31
        self.activate = build_activation(self._activation)
32
        self._input_type = input_type
33
        self._output_type = output_type
34
        self.inner_init = inner_init if inner_init else OrthogonalInitializer()
35
        self.outer_init = outer_init if outer_init else XavierGlorotInitializer()
36
        self._steps = steps
37
        self._mask = mask.tensor if type(mask) == NeuralVariable else mask
38
        self._go_backwards = backward
39
        self.additional_input_dims = additional_input_dims if additional_input_dims else []
40
41
        if input_type not in INPUT_TYPES:
42
            raise Exception("Input type of {} is wrong: {}".format(name, input_type))
43
        if output_type not in OUTPUT_TYPES:
44
            raise Exception("Output type of {} is wrong: {}".format(name, output_type))
45
46
    @neural_computation
47
    def step(self, step_inputs):
48
        new_states = self.compute_new_state(step_inputs)
49
50
        # apply mask for each step if `output_type` is 'one'
51
        if self._output_type == "one" and step_inputs.get("mask"):
52
            mask = step_inputs["mask"].dimshuffle(0, 'x')
53
            for state_name in new_states:
54
                new_states[state_name] = new_states[state_name] * mask + step_inputs[state_name] * (1 - mask)
55
56
        return new_states
57
58
    @abstractmethod
59
    def compute_new_state(self, step_inputs):
60
        """
61
        :type step_inputs: dict
62
        :rtype: dict
63
        """
64
65
    @abstractmethod
66
    def merge_inputs(self, input_var, additional_inputs=None):
67
        """
68
        Merge inputs and return a map, which will be passed to core_step.
69
        :type input_var: T.var
70
        :param additional_inputs: list
71
        :rtype: dict
72
        """
73
74
    @abstractmethod
75
    def prepare(self):
76
        pass
77
78
    @neural_computation
79
    def get_initial_states(self, input_var):
80
        """
81
        :type input_var: T.var
82
        :rtype: dict
83
        """
84
        initial_states = {}
85
        for state in self.state_names:
86
            initial_states[state] = T.alloc(np.cast[FLOATX](0.), input_var.shape[0], self.hidden_size)
87
        return initial_states
88
89
    @neural_computation
90
    def get_step_inputs(self, input_var, states=None, mask=None, additional_inputs=None):
91
        """
92
        :type input_var: T.var
93
        :rtype: dict
94
        """
95
        step_inputs = {}
96
        if self._input_type == "sequence":
97
            if not additional_inputs:
98
                additional_inputs = []
99
            step_inputs.update(self.merge_inputs(input_var, additional_inputs=additional_inputs))
100
        else:
101
            # step_inputs["mask"] = mask.dimshuffle((1,0)) if mask else None
102
            if additional_inputs:
103
                step_inputs.update(self.merge_inputs(None, additional_inputs=additional_inputs))
104
        if states:
105
            for name in self.state_names:
106
                step_inputs[name] = states[name]
107
108
        return step_inputs
109
110
    def compute(self, input_var, mask=None, additional_inputs=None, steps=None, backward=False):
111
        if additional_inputs and not self.additional_input_dims:
112
            self.additional_input_dims = map(lambda var: var.dim(), additional_inputs)
113
        return super(RecurrentLayer, self).compute(input_var, mask=mask, additional_inputs=additional_inputs, steps=steps, backward=backward)
114
115
    def compute_tensor(self, input_var, mask=None, additional_inputs=None, steps=None, backward=False):
116
        # prepare parameters
117
        backward = backward if backward else self._go_backwards
118
        steps = steps if steps else self._steps
119
        mask = mask if mask else self._mask
120
        if mask and self._input_type == "one":
121
            raise Exception("Mask only works with sequence input")
122
        # get initial states
123
        init_state_map = self.get_initial_states(input_var)
124
        # get input sequence map
125
        if self._input_type == "sequence":
126
            # Move middle dimension to left-most position
127
            # (sequence, batch, value)
128
            input_var = input_var.dimshuffle((1,0,2))
129
            seq_map = self.get_step_inputs(input_var, mask=mask, additional_inputs=additional_inputs)
130
        else:
131
            init_state_map[self.main_state] = input_var
132
            seq_map = self.get_step_inputs(None, mask=mask, additional_inputs=additional_inputs)
133
        # scan
134
        retval_map, _ = Scanner(
135
            self.step,
136
            sequences=seq_map,
137
            outputs_info=init_state_map,
138
            n_steps=steps,
139
            go_backwards=backward
140
        ).compute()
141
        # return main states
142
        main_states = retval_map[self.main_state]
143
        if self._output_type == "one":
144
            return main_states[-1]
145
        elif self._output_type == "sequence":
146
            main_states = main_states.dimshuffle((1,0,2)) # ~ batch, time, size
147
            if mask: # ~ batch, time
148
                main_states *= mask.dimshuffle((0, 1, 'x'))
149
            return main_states
150
151
152
class RNN(RecurrentLayer):
153
154
    def  __init__(self, hidden_size, **kwargs):
155
        kwargs["hidden_size"] = hidden_size
156
        super(RNN, self).__init__("RNN", ["state"], **kwargs)
157
158
    @neural_computation
159
    def compute_new_state(self, step_inputs):
160
        xh_t, h_tm1 = map(step_inputs.get, ["xh_t", "state"])
161
        if not xh_t:
162
            xh_t = 0
163
164
        h_t = self.activate(xh_t + T.dot(h_tm1, self.W_h) + self.b_h)
165
166
        return {"state": h_t}
167
168
    @neural_computation
169
    def merge_inputs(self, input_var, additional_inputs=None):
170
        if not additional_inputs:
171
            additional_inputs = []
172
        all_inputs = [input_var] + additional_inputs
173
        h_inputs = []
174
        for x, weights in zip(all_inputs, self.input_weights):
175
            wi, = weights
176
            h_inputs.append(T.dot(x, wi))
177
        merged_inputs = {
178
            "xh_t": sum(h_inputs)
179
        }
180
        return merged_inputs
181
182
    def prepare(self):
183
        self.output_dim = self.hidden_size
184
185
        self.W_h = self.create_weight(self.hidden_size, self.hidden_size, "h", initializer=self.outer_init)
186
        self.b_h = self.create_bias(self.hidden_size, "h")
187
188
        self.register_parameters(self.W_h, self.b_h)
189
190
        self.input_weights = []
191
        if self._input_type == "sequence":
192
            all_input_dims = [self.input_dim] + self.additional_input_dims
193
            for i, input_dim in enumerate(all_input_dims):
194
                wi = self.create_weight(input_dim, self.hidden_size, "wi_{}".format(i+1), initializer=self.outer_init)
195
                weights = [wi]
196
                self.input_weights.append(weights)
197
                self.register_parameters(*weights)