| Total Complexity | 15 |
| Total Lines | 183 |
| Duplicated Lines | 48.09 % |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
| 1 | #!/usr/bin/env python |
||
| 18 | class AttentionLayer(NeuralLayer): |
||
| 19 | |||
| 20 | def __init__(self, activation='relu', std=0.1, disable_reinforce=False, random_glimpse=False): |
||
| 21 | self.disable_reinforce = disable_reinforce |
||
| 22 | self.random_glimpse = random_glimpse |
||
| 23 | self.gaussian_std = std |
||
| 24 | super(AttentionLayer, self).__init__(10, activation) |
||
| 25 | |||
| 26 | def initialize(self, config, vars, x, input_n, id="UNKNOWN"): |
||
| 27 | self._config = config |
||
| 28 | self._vars = vars |
||
| 29 | self.input_n = input_n |
||
| 30 | self.id = id |
||
| 31 | self.x = x |
||
| 32 | self._setup_params() |
||
| 33 | self._setup_functions() |
||
| 34 | self.connected = True |
||
| 35 | |||
| 36 | def _glimpse_sensor(self, x_t, l_p): |
||
| 37 | """ |
||
| 38 | Parameters: |
||
| 39 | x_t - 28x28 image |
||
| 40 | l_p - 2x1 focus vector |
||
| 41 | Returns: |
||
| 42 | 4x12 matrix |
||
| 43 | """ |
||
| 44 | # Turn l_p to the left-top point of rectangle |
||
| 45 | l_p = l_p * 14 + 14 - 2 |
||
| 46 | l_p = T.cast(T.round(l_p), "int32") |
||
| 47 | |||
| 48 | l_p = l_p * (l_p >= 0) |
||
| 49 | l_p = l_p * (l_p < 24) + (l_p >= 24) * 23 |
||
| 50 | l_p2 = l_p - 2 |
||
| 51 | l_p2 = l_p2 * (l_p2 >= 0) |
||
| 52 | l_p2 = l_p2 * (l_p2 < 20) + (l_p2 >= 20) * 19 |
||
| 53 | l_p3 = l_p - 6 |
||
| 54 | l_p3 = l_p3 * (l_p3 >= 0) |
||
| 55 | l_p3 = l_p3 * (l_p3 < 16) + (l_p3 >= 16) * 15 |
||
| 56 | glimpse_1 = x_t[l_p[0]: l_p[0] + 4][:, l_p[1]: l_p[1] + 4] |
||
| 57 | glimpse_2 = x_t[l_p2[0]: l_p2[0] + 8][:, l_p2[1]: l_p2[1] + 8] |
||
| 58 | glimpse_2 = theano.tensor.signal.downsample.max_pool_2d(glimpse_2, (2,2)) |
||
| 59 | glimpse_3 = x_t[l_p3[0]: l_p3[0] + 16][:, l_p3[1]: l_p3[1] + 16] |
||
| 60 | glimpse_3 = theano.tensor.signal.downsample.max_pool_2d(glimpse_3, (4,4)) |
||
| 61 | return T.concatenate([glimpse_1, glimpse_2, glimpse_3]) |
||
| 62 | |||
| 63 | View Code Duplication | def _refined_glimpse_sensor(self, x_t, l_p): |
|
|
|
|||
| 64 | """ |
||
| 65 | Parameters: |
||
| 66 | x_t - 28x28 image |
||
| 67 | l_p - 2x1 focus vector |
||
| 68 | Returns: |
||
| 69 | 7*14 matrix |
||
| 70 | """ |
||
| 71 | # Turn l_p to the left-top point of rectangle |
||
| 72 | l_p = l_p * 14 + 14 - 4 |
||
| 73 | l_p = T.cast(T.round(l_p), "int32") |
||
| 74 | |||
| 75 | l_p = l_p * (l_p >= 0) |
||
| 76 | l_p = l_p * (l_p < 21) + (l_p >= 21) * 20 |
||
| 77 | glimpse_1 = x_t[l_p[0]: l_p[0] + 7][:, l_p[1]: l_p[1] + 7] |
||
| 78 | # glimpse_2 = theano.tensor.signal.downsample.max_pool_2d(x_t, (4,4)) |
||
| 79 | # return T.concatenate([glimpse_1, glimpse_2]) |
||
| 80 | return glimpse_1 |
||
| 81 | |||
| 82 | def _multi_gaussian_pdf(self, vec, mean): |
||
| 83 | norm2d_var = ((1.0 / T.sqrt((2*np.pi)**2 * self.cov_det_var)) * |
||
| 84 | T.exp(-0.5 * ((vec-mean).T.dot(self.cov_inv_var).dot(vec-mean)))) |
||
| 85 | return norm2d_var |
||
| 86 | |||
| 87 | def _glimpse_network(self, x_t, l_p): |
||
| 88 | """ |
||
| 89 | Parameters: |
||
| 90 | x_t - 28x28 image |
||
| 91 | l_p - 2x1 focus vector |
||
| 92 | Returns: |
||
| 93 | 4x12 matrix |
||
| 94 | """ |
||
| 95 | sensor_output = self._refined_glimpse_sensor(x_t, l_p) |
||
| 96 | sensor_output = T.flatten(sensor_output) |
||
| 97 | h_g = self._relu(T.dot(sensor_output, self.W_g0)) |
||
| 98 | h_l = self._relu(T.dot(l_p, self.W_g1)) |
||
| 99 | g = self._relu(T.dot(h_g, self.W_g2_hg) + T.dot(h_l, self.W_g2_hl)) |
||
| 100 | return g |
||
| 101 | |||
| 102 | def _location_network(self, h_t): |
||
| 103 | """ |
||
| 104 | Parameters: |
||
| 105 | h_t - 256x1 vector |
||
| 106 | Returns: |
||
| 107 | 2x1 focus vector |
||
| 108 | """ |
||
| 109 | return T.dot(h_t, self.W_l) |
||
| 110 | |||
| 111 | def _action_network(self, h_t): |
||
| 112 | """ |
||
| 113 | Parameters: |
||
| 114 | h_t - 256x1 vector |
||
| 115 | Returns: |
||
| 116 | 10x1 vector |
||
| 117 | """ |
||
| 118 | z = self._relu(T.dot(h_t, self.W_a) + self.B_a) |
||
| 119 | return self._softmax(z) |
||
| 120 | |||
| 121 | View Code Duplication | def _core_network(self, l_p, h_p, x_t): |
|
| 122 | """ |
||
| 123 | Parameters: |
||
| 124 | x_t - 28x28 image |
||
| 125 | l_p - 2x1 focus vector |
||
| 126 | h_p - 256x1 vector |
||
| 127 | Returns: |
||
| 128 | h_t, 256x1 vector |
||
| 129 | """ |
||
| 130 | g_t = self._glimpse_network(x_t, l_p) |
||
| 131 | h_t = self._tanh(T.dot(g_t, self.W_h_g) + T.dot(h_p, self.W_h) + self.B_h) |
||
| 132 | l_t = self._location_network(h_t) |
||
| 133 | |||
| 134 | if not self.disable_reinforce: |
||
| 135 | sampled_l_t = self._sample_gaussian(l_t, self.cov) |
||
| 136 | sampled_pdf = self._multi_gaussian_pdf(disconnected_grad(sampled_l_t), l_t) |
||
| 137 | wl_grad = T.grad(T.log(sampled_pdf), self.W_l) |
||
| 138 | else: |
||
| 139 | sampled_l_t = l_t |
||
| 140 | wl_grad = self.W_l |
||
| 141 | |||
| 142 | if self.random_glimpse and self.disable_reinforce: |
||
| 143 | sampled_l_t = self.srng.uniform((2,)) * 0.8 |
||
| 144 | |||
| 145 | a_t = self._action_network(h_t) |
||
| 146 | |||
| 147 | return sampled_l_t, h_t, a_t, wl_grad |
||
| 148 | |||
| 149 | |||
| 150 | View Code Duplication | def _output_func(self): |
|
| 151 | self.x = self.x.reshape((28, 28)) |
||
| 152 | [l_ts, h_ts, a_ts, wl_grads], _ = theano.scan(fn=self._core_network, |
||
| 153 | outputs_info=[self.l0, self.h0, None, None], |
||
| 154 | non_sequences=[self.x], |
||
| 155 | n_steps=5) |
||
| 156 | |||
| 157 | self.positions = l_ts |
||
| 158 | self.last_decision = T.argmax(a_ts[-1]) |
||
| 159 | wl_grad = T.sum(wl_grads, axis=0) / wl_grads.shape[0] |
||
| 160 | self.wl_grad = wl_grad |
||
| 161 | return a_ts[-1].reshape((1,10)) |
||
| 162 | |||
| 163 | def _setup_functions(self): |
||
| 164 | self._assistive_params = [] |
||
| 165 | self._relu = build_activation("tanh") |
||
| 166 | self._tanh = build_activation("tanh") |
||
| 167 | self._softmax = build_activation("softmax") |
||
| 168 | self.output_func = self._output_func() |
||
| 169 | |||
| 170 | View Code Duplication | def _setup_params(self): |
|
| 171 | self.srng = RandomStreams(seed=234) |
||
| 172 | self.large_cov = np.array([[0.06,0],[0,0.06]], dtype=FLOATX) |
||
| 173 | self.small_cov = np.array([[self.gaussian_std,0],[0,self.gaussian_std]], dtype=FLOATX) |
||
| 174 | self.cov = theano.shared(np.array(self.small_cov, dtype=FLOATX)) |
||
| 175 | self.cov_inv_var = theano.shared(np.array(LA.inv(self.small_cov), dtype=FLOATX)) |
||
| 176 | self.cov_det_var = theano.shared(np.array(LA.det(self.small_cov), dtype=FLOATX)) |
||
| 177 | self._sample_gaussian = SampleMultivariateGaussian() |
||
| 178 | |||
| 179 | self.W_g0 = self.create_weight(7*7, 128, suffix="g0") |
||
| 180 | self.W_g1 = self.create_weight(2, 128, suffix="g1") |
||
| 181 | self.W_g2_hg = self.create_weight(128, 256, suffix="g2_hg") |
||
| 182 | self.W_g2_hl = self.create_weight(128, 256, suffix="g2_hl") |
||
| 183 | |||
| 184 | self.W_h_g = self.create_weight(256, 256, suffix="h_g") |
||
| 185 | self.W_h = self.create_weight(256, 256, suffix="h") |
||
| 186 | self.B_h = self.create_bias(256, suffix="h") |
||
| 187 | self.h0 = self.create_vector(256, "h0") |
||
| 188 | self.l0 = self.create_vector(2, "l0") |
||
| 189 | self.l0.set_value(np.array([-1, -1], dtype=FLOATX)) |
||
| 190 | |||
| 191 | self.W_l = self.create_weight(256, 2, suffix="l") |
||
| 192 | self.W_l.set_value(self.W_l.get_value() / 10) |
||
| 193 | self.B_l = self.create_bias(2, suffix="l") |
||
| 194 | self.W_a = self.create_weight(256, 10, suffix="a") |
||
| 195 | self.B_a = self.create_bias(10, suffix="a") |
||
| 196 | |||
| 197 | |||
| 198 | self.W = [self.W_g0, self.W_g1, self.W_g2_hg, self.W_g2_hl, self.W_h_g, self.W_h, self.W_a] |
||
| 199 | self.B = [self.B_h, self.B_a] |
||
| 200 | self.parameters = [self.W_l] |
||
| 201 | |||
| 217 |