@@ 19-42 (lines=24) @@ | ||
16 | ||
17 | default_model = os.path.join(os.path.dirname(__file__), "models", "class_based_rnnlm.gz") |
|
18 | ||
19 | if __name__ == '__main__': |
|
20 | ap = ArgumentParser() |
|
21 | ap.add_argument("--model", default="") |
|
22 | ap.add_argument("--small", action="store_true") |
|
23 | args = ap.parse_args() |
|
24 | ||
25 | vocab, lmdata = load_data(small=args.small, history_len=5, batch_size=64) |
|
26 | import pdb; pdb.set_trace() |
|
27 | model = NeuralLM(vocab.size) |
|
28 | model.stack(RNN(hidden_size=100, output_type="sequence", hidden_activation='sigmoid', |
|
29 | persistent_state=True, batch_size=lmdata.size, |
|
30 | reset_state_for_input=0), |
|
31 | ClassOutputLayer(output_size=100, class_size=100)) |
|
32 | ||
33 | if os.path.exists(args.model): |
|
34 | model.load_params(args.model) |
|
35 | ||
36 | trainer = SGDTrainer(model, {"learning_rate": LearningRateAnnealer.learning_rate(1.2), |
|
37 | "weight_l2": 1e-7}) |
|
38 | annealer = LearningRateAnnealer() |
|
39 | ||
40 | trainer.run(lmdata, epoch_controllers=[annealer]) |
|
41 | ||
42 | model.save_params(default_model) |
|
43 |
@@ 19-41 (lines=23) @@ | ||
16 | ||
17 | default_model = os.path.join(os.path.dirname(__file__), "models", "lstm_rnnlm.gz") |
|
18 | ||
19 | if __name__ == '__main__': |
|
20 | ap = ArgumentParser() |
|
21 | ap.add_argument("--model", default="") |
|
22 | ap.add_argument("--small", action="store_true") |
|
23 | args = ap.parse_args() |
|
24 | ||
25 | vocab, lmdata = load_data(small=args.small, history_len=5, batch_size=64) |
|
26 | model = NeuralLM(vocab.size) |
|
27 | model.stack(LSTM(hidden_size=100, output_type="sequence", |
|
28 | persistent_state=True, batch_size=lmdata.size, |
|
29 | reset_state_for_input=0), |
|
30 | FullOutputLayer(vocab.size)) |
|
31 | ||
32 | if os.path.exists(args.model): |
|
33 | model.load_params(args.model) |
|
34 | ||
35 | trainer = SGDTrainer(model, {"learning_rate": LearningRateAnnealer.learning_rate(1.2), |
|
36 | "weight_l2": 1e-7}) |
|
37 | annealer = LearningRateAnnealer() |
|
38 | ||
39 | trainer.run(lmdata, epoch_controllers=[annealer]) |
|
40 | ||
41 | model.save_params(default_model) |
|
42 |
@@ 19-41 (lines=23) @@ | ||
16 | ||
17 | default_model = os.path.join(os.path.dirname(__file__), "models", "baseline_rnnlm.gz") |
|
18 | ||
19 | if __name__ == '__main__': |
|
20 | ap = ArgumentParser() |
|
21 | ap.add_argument("--model", default="") |
|
22 | ap.add_argument("--small", action="store_true") |
|
23 | args = ap.parse_args() |
|
24 | ||
25 | vocab, lmdata = load_data(small=args.small, history_len=5, batch_size=64) |
|
26 | model = NeuralLM(vocab.size) |
|
27 | model.stack(RNN(hidden_size=100, output_type="sequence", hidden_activation="sigmoid", |
|
28 | persistent_state=True, batch_size=lmdata.size, |
|
29 | reset_state_for_input=0), |
|
30 | FullOutputLayer(vocab.size)) |
|
31 | ||
32 | if os.path.exists(args.model): |
|
33 | model.load_params(args.model) |
|
34 | ||
35 | trainer = SGDTrainer(model, {"learning_rate": LearningRateAnnealer.learning_rate(1.2), |
|
36 | "weight_l2": 1e-7}) |
|
37 | annealer = LearningRateAnnealer() |
|
38 | ||
39 | trainer.run(lmdata, epoch_controllers=[annealer]) |
|
40 | ||
41 | model.save_params(default_model) |
|
42 |