Code Duplication    Length = 23-24 lines in 3 locations

examples/lm/class_based_rnnlm.py 1 location

@@ 19-42 (lines=24) @@
16
17
default_model = os.path.join(os.path.dirname(__file__), "models", "class_based_rnnlm.gz")
18
19
if __name__ == '__main__':
20
    ap = ArgumentParser()
21
    ap.add_argument("--model", default="")
22
    ap.add_argument("--small", action="store_true")
23
    args = ap.parse_args()
24
25
    vocab, lmdata = load_data(small=args.small, history_len=5, batch_size=64)
26
    import pdb; pdb.set_trace()
27
    model = NeuralLM(vocab.size)
28
    model.stack(RNN(hidden_size=100, output_type="sequence", hidden_activation='sigmoid',
29
                    persistent_state=True, batch_size=lmdata.size,
30
                    reset_state_for_input=0),
31
                ClassOutputLayer(output_size=100, class_size=100))
32
33
    if os.path.exists(args.model):
34
        model.load_params(args.model)
35
36
    trainer = SGDTrainer(model, {"learning_rate": LearningRateAnnealer.learning_rate(1.2),
37
                                 "weight_l2": 1e-7})
38
    annealer = LearningRateAnnealer()
39
40
    trainer.run(lmdata, epoch_controllers=[annealer])
41
42
    model.save_params(default_model)
43

examples/lm/lstm_rnnlm.py 1 location

@@ 19-41 (lines=23) @@
16
17
default_model = os.path.join(os.path.dirname(__file__), "models", "lstm_rnnlm.gz")
18
19
if __name__ == '__main__':
20
    ap = ArgumentParser()
21
    ap.add_argument("--model", default="")
22
    ap.add_argument("--small", action="store_true")
23
    args = ap.parse_args()
24
25
    vocab, lmdata = load_data(small=args.small, history_len=5, batch_size=64)
26
    model = NeuralLM(vocab.size)
27
    model.stack(LSTM(hidden_size=100, output_type="sequence",
28
                    persistent_state=True, batch_size=lmdata.size,
29
                    reset_state_for_input=0),
30
                FullOutputLayer(vocab.size))
31
32
    if os.path.exists(args.model):
33
        model.load_params(args.model)
34
35
    trainer = SGDTrainer(model, {"learning_rate": LearningRateAnnealer.learning_rate(1.2),
36
                                 "weight_l2": 1e-7})
37
    annealer = LearningRateAnnealer()
38
39
    trainer.run(lmdata, epoch_controllers=[annealer])
40
41
    model.save_params(default_model)
42

examples/lm/baseline_rnnlm.py 1 location

@@ 19-41 (lines=23) @@
16
17
default_model = os.path.join(os.path.dirname(__file__), "models", "baseline_rnnlm.gz")
18
19
if __name__ == '__main__':
20
    ap = ArgumentParser()
21
    ap.add_argument("--model", default="")
22
    ap.add_argument("--small", action="store_true")
23
    args = ap.parse_args()
24
25
    vocab, lmdata = load_data(small=args.small, history_len=5, batch_size=64)
26
    model = NeuralLM(vocab.size)
27
    model.stack(RNN(hidden_size=100, output_type="sequence", hidden_activation="sigmoid",
28
                    persistent_state=True, batch_size=lmdata.size,
29
                    reset_state_for_input=0),
30
                FullOutputLayer(vocab.size))
31
32
    if os.path.exists(args.model):
33
        model.load_params(args.model)
34
35
    trainer = SGDTrainer(model, {"learning_rate": LearningRateAnnealer.learning_rate(1.2),
36
                                 "weight_l2": 1e-7})
37
    annealer = LearningRateAnnealer()
38
39
    trainer.run(lmdata, epoch_controllers=[annealer])
40
41
    model.save_params(default_model)
42