|
1
|
|
|
#!/usr/bin/env python |
|
2
|
|
|
# -*- coding: utf-8 -*- |
|
3
|
|
|
|
|
4
|
|
|
|
|
5
|
|
|
""" |
|
6
|
|
|
The code in this file is from the scan function in theano. |
|
7
|
|
|
Never modify this file directly. |
|
8
|
|
|
""" |
|
9
|
|
|
|
|
10
|
|
|
|
|
11
|
|
|
import logging |
|
12
|
|
|
import numpy |
|
13
|
|
|
import warnings |
|
14
|
|
|
|
|
15
|
|
|
from theano.compat import ifilter, izip |
|
16
|
|
|
from six import iteritems, integer_types |
|
17
|
|
|
from six.moves import xrange |
|
18
|
|
|
from theano.compile import SharedVariable, function |
|
19
|
|
|
from theano import compile |
|
20
|
|
|
from theano import gof |
|
21
|
|
|
from theano.tensor import opt |
|
22
|
|
|
from theano import tensor |
|
23
|
|
|
from theano import config |
|
24
|
|
|
from theano.updates import OrderedUpdates |
|
25
|
|
|
from theano.compile import ops |
|
26
|
|
|
from theano.compat import OrderedDict |
|
27
|
|
|
|
|
28
|
|
|
|
|
29
|
|
|
from theano.scan_module import scan_op |
|
30
|
|
|
from theano.scan_module import scan_utils |
|
31
|
|
|
from theano.scan_module.scan_utils import safe_new, traverse |
|
32
|
|
|
|
|
33
|
|
|
# Logging function for sending warning or info |
|
34
|
|
|
_logger = logging.getLogger('scan_dummy_args') |
|
35
|
|
|
|
|
36
|
|
|
|
|
37
|
|
|
|
|
38
|
|
|
def get_dummy_args(sequences=None, |
|
39
|
|
|
outputs_info=None, |
|
40
|
|
|
non_sequences=None, |
|
41
|
|
|
n_steps=None, |
|
42
|
|
|
truncate_gradient=-1, |
|
43
|
|
|
go_backwards=False, |
|
44
|
|
|
mode=None, |
|
45
|
|
|
name=None, |
|
46
|
|
|
profile=False, |
|
47
|
|
|
allow_gc=None, |
|
48
|
|
|
strict=False): |
|
49
|
|
|
################################################################## P1> |
|
50
|
|
|
# check if inputs are just single variables instead of lists |
|
51
|
|
|
def wrap_into_list(x): |
|
52
|
|
|
""" |
|
53
|
|
|
Wrap the input into a list if it is not already a list. |
|
54
|
|
|
|
|
55
|
|
|
""" |
|
56
|
|
|
if x is None: |
|
57
|
|
|
return [] |
|
58
|
|
|
elif not isinstance(x, (list, tuple)): |
|
59
|
|
|
return [x] |
|
60
|
|
|
else: |
|
61
|
|
|
return list(x) |
|
62
|
|
|
|
|
63
|
|
|
seqs = wrap_into_list(sequences) |
|
64
|
|
|
outs_info = wrap_into_list(outputs_info) |
|
65
|
|
|
|
|
66
|
|
|
# Make sure we get rid of numpy arrays or ints or anything like that |
|
67
|
|
|
# passed as inputs to scan |
|
68
|
|
|
non_seqs = [] |
|
69
|
|
|
for elem in wrap_into_list(non_sequences): |
|
70
|
|
|
if not isinstance(elem, gof.Variable): |
|
71
|
|
|
non_seqs.append(tensor.as_tensor_variable(elem)) |
|
72
|
|
|
else: |
|
73
|
|
|
non_seqs.append(elem) |
|
74
|
|
|
|
|
75
|
|
|
# If we provided a known number of steps ( before compilation) |
|
76
|
|
|
# and if that number is 1 or -1, then we can skip the Scan Op, |
|
77
|
|
|
# and just apply the inner function once |
|
78
|
|
|
# To do that we check here to see the nature of n_steps |
|
79
|
|
|
n_fixed_steps = None |
|
80
|
|
|
|
|
81
|
|
|
if isinstance(n_steps, (float, integer_types)): |
|
82
|
|
|
n_fixed_steps = int(n_steps) |
|
83
|
|
|
else: |
|
84
|
|
|
try: |
|
85
|
|
|
n_fixed_steps = opt.get_scalar_constant_value(n_steps) |
|
86
|
|
|
except tensor.basic.NotScalarConstantError: |
|
87
|
|
|
n_fixed_steps = None |
|
88
|
|
|
|
|
89
|
|
|
# Check n_steps is an int |
|
90
|
|
|
if (hasattr(n_steps, 'dtype') and |
|
91
|
|
|
str(n_steps.dtype)[:3] not in ('uin', 'int')): |
|
92
|
|
|
raise ValueError(' n_steps must be an int. dtype provided ' |
|
93
|
|
|
'is %s' % n_steps.dtype) |
|
94
|
|
|
|
|
95
|
|
|
# compute number of sequences and number of outputs |
|
96
|
|
|
n_seqs = len(seqs) |
|
97
|
|
|
n_outs = len(outs_info) |
|
98
|
|
|
|
|
99
|
|
|
return_steps = OrderedDict() |
|
100
|
|
|
# wrap sequences in a dictionary if they are not already dictionaries |
|
101
|
|
|
for i in xrange(n_seqs): |
|
102
|
|
|
if not isinstance(seqs[i], dict): |
|
103
|
|
|
seqs[i] = OrderedDict([('input', seqs[i]), ('taps', [0])]) |
|
104
|
|
|
elif seqs[i].get('taps', None) is not None: |
|
105
|
|
|
seqs[i]['taps'] = wrap_into_list(seqs[i]['taps']) |
|
106
|
|
|
elif seqs[i].get('taps', None) is None: |
|
107
|
|
|
# seqs dictionary does not have the ``taps`` key |
|
108
|
|
|
seqs[i]['taps'] = [0] |
|
109
|
|
|
|
|
110
|
|
|
# wrap outputs info in a dictionary if they are not already in one |
|
111
|
|
|
for i in xrange(n_outs): |
|
112
|
|
|
if outs_info[i] is not None: |
|
113
|
|
|
if isinstance(outs_info[i], dict): |
|
114
|
|
|
# DEPRECATED : |
|
115
|
|
|
if outs_info[i].get('return_steps', None) is not None: |
|
116
|
|
|
raise ValueError( |
|
117
|
|
|
"Using `return_steps` has been deprecated. " |
|
118
|
|
|
"Simply select the entries you need using a " |
|
119
|
|
|
"subtensor. Scan will optimize memory " |
|
120
|
|
|
"consumption, so do not worry about that.") |
|
121
|
|
|
# END |
|
122
|
|
|
|
|
123
|
|
|
if not isinstance(outs_info[i], dict): |
|
124
|
|
|
# by default any output has a tap value of -1 |
|
125
|
|
|
outs_info[i] = OrderedDict([('initial', outs_info[i]), ('taps', [-1])]) |
|
126
|
|
|
elif (outs_info[i].get('initial', None) is None and |
|
127
|
|
|
outs_info[i].get('taps', None) is not None): |
|
128
|
|
|
# ^ no initial state but taps provided |
|
129
|
|
|
raise ValueError(('If you are using slices of an output ' |
|
130
|
|
|
'you need to provide a initial state ' |
|
131
|
|
|
'for it'), outs_info[i]) |
|
132
|
|
|
elif (outs_info[i].get('initial', None) is not None and |
|
133
|
|
|
outs_info[i].get('taps', None) is None): |
|
134
|
|
|
# ^ initial state but taps not provided |
|
135
|
|
|
if 'taps' in outs_info[i]: |
|
136
|
|
|
# ^ explicitly provided a None for taps |
|
137
|
|
|
_logger.warning('Output %s ( index %d) has a initial ' |
|
138
|
|
|
'state but taps is explicitly set to None ', |
|
139
|
|
|
getattr(outs_info[i]['initial'], 'name', 'None'), |
|
140
|
|
|
i) |
|
141
|
|
|
outs_info[i]['taps'] = [-1] |
|
142
|
|
|
else: |
|
143
|
|
|
# if a None is provided as the output info we replace it |
|
144
|
|
|
# with an empty OrdereDict() to simplify handling |
|
145
|
|
|
outs_info[i] = OrderedDict() |
|
146
|
|
|
|
|
147
|
|
|
## |
|
148
|
|
|
# Step 2. Generate inputs and outputs of the inner functions |
|
149
|
|
|
# for compiling a dummy function (Iteration #1) |
|
150
|
|
|
## |
|
151
|
|
|
|
|
152
|
|
|
# create theano inputs for the recursive function |
|
153
|
|
|
# note : this is a first batch of possible inputs that will |
|
154
|
|
|
# be compiled in a dummy function; we used this dummy |
|
155
|
|
|
# function to detect shared variables and their updates |
|
156
|
|
|
# and to construct a new and complete list of inputs and |
|
157
|
|
|
# outputs |
|
158
|
|
|
|
|
159
|
|
|
n_seqs = 0 |
|
160
|
|
|
scan_seqs = [] # Variables passed as inputs to the scan op |
|
161
|
|
|
inner_seqs = [] # Variables passed as inputs to the inner function |
|
162
|
|
|
inner_slices = [] # Actual slices if scan is removed from the picture |
|
163
|
|
|
# go through sequences picking up time slices as needed |
|
164
|
|
|
for i, seq in enumerate(seqs): |
|
165
|
|
|
# Note that you can have something like no taps for |
|
166
|
|
|
# a sequence, though is highly unlikely in practice |
|
167
|
|
|
if 'taps' in seq: |
|
168
|
|
|
# go through the indicated slice |
|
169
|
|
|
mintap = numpy.min(seq['taps']) |
|
170
|
|
|
maxtap = numpy.max(seq['taps']) |
|
171
|
|
|
for k in seq['taps']: |
|
172
|
|
|
# create one slice of the input |
|
173
|
|
|
# Later on, if we decide not to use scan because we are |
|
174
|
|
|
# going for just one step, it makes things easier if we |
|
175
|
|
|
# compute the correct outputs here. This way we can use |
|
176
|
|
|
# the output of the lambda expression directly to replace |
|
177
|
|
|
# the output of scan. |
|
178
|
|
|
|
|
179
|
|
|
# If not we need to use copies, that will be replaced at |
|
180
|
|
|
# each frame by the corresponding slice |
|
181
|
|
|
actual_slice = seq['input'][k - mintap] |
|
182
|
|
|
_seq_val = tensor.as_tensor_variable(seq['input']) |
|
183
|
|
|
_seq_val_slice = _seq_val[k - mintap] |
|
184
|
|
|
nw_slice = _seq_val_slice.type() |
|
185
|
|
|
|
|
186
|
|
|
# Try to transfer test_value to the new variable |
|
187
|
|
|
if config.compute_test_value != 'off': |
|
188
|
|
|
try: |
|
189
|
|
|
nw_slice.tag.test_value = gof.Op._get_test_value( |
|
190
|
|
|
_seq_val_slice) |
|
191
|
|
|
except AttributeError as e: |
|
192
|
|
|
if config.compute_test_value != 'ignore': |
|
193
|
|
|
# No need to print a warning or raise an error now, |
|
194
|
|
|
# it will be done when fn will be called. |
|
195
|
|
|
_logger.info(('Cannot compute test value for ' |
|
196
|
|
|
'the inner function of scan, input value ' |
|
197
|
|
|
'missing %s'), e) |
|
198
|
|
|
|
|
199
|
|
|
# Add names to slices for debugging and pretty printing .. |
|
200
|
|
|
# that is if the input already has a name |
|
201
|
|
|
if getattr(seq['input'], 'name', None) is not None: |
|
202
|
|
|
if k > 0: |
|
203
|
|
|
nw_name = seq['input'].name + '[t+%d]' % k |
|
204
|
|
|
elif k == 0: |
|
205
|
|
|
nw_name = seq['input'].name + '[t]' |
|
206
|
|
|
else: |
|
207
|
|
|
nw_name = seq['input'].name + '[t%d]' % k |
|
208
|
|
|
nw_slice.name = nw_name |
|
209
|
|
|
|
|
210
|
|
|
# We cut the sequence such that seq[i] to correspond to |
|
211
|
|
|
# seq[i-k]. For the purposes of cutting the sequences, we |
|
212
|
|
|
# need to pretend tap 0 is used to avoid cutting the sequences |
|
213
|
|
|
# too long if the taps are all lower or all higher than 0. |
|
214
|
|
|
maxtap_proxy = max(maxtap, 0) |
|
215
|
|
|
mintap_proxy = min(mintap, 0) |
|
216
|
|
|
start = (k - mintap_proxy) |
|
217
|
|
|
if k == maxtap_proxy: |
|
218
|
|
|
nw_seq = seq['input'][start:] |
|
219
|
|
|
else: |
|
220
|
|
|
end = -(maxtap_proxy - k) |
|
221
|
|
|
nw_seq = seq['input'][start:end] |
|
222
|
|
|
|
|
223
|
|
|
if go_backwards: |
|
224
|
|
|
nw_seq = nw_seq[::-1] |
|
225
|
|
|
|
|
226
|
|
|
scan_seqs.append(nw_seq) |
|
227
|
|
|
inner_seqs.append(nw_slice) |
|
228
|
|
|
inner_slices.append(actual_slice) |
|
229
|
|
|
n_seqs += 1 |
|
230
|
|
|
|
|
231
|
|
|
# Since we've added all sequences now we need to level them up based on |
|
232
|
|
|
# n_steps or their different shapes |
|
233
|
|
|
lengths_vec = [] |
|
234
|
|
|
for seq in scan_seqs: |
|
235
|
|
|
lengths_vec.append(seq.shape[0]) |
|
236
|
|
|
|
|
237
|
|
|
if not scan_utils.isNaN_or_Inf_or_None(n_steps): |
|
238
|
|
|
# ^ N_steps should also be considered |
|
239
|
|
|
lengths_vec.append(tensor.as_tensor(n_steps)) |
|
240
|
|
|
|
|
241
|
|
|
if len(lengths_vec) == 0: |
|
242
|
|
|
# ^ No information about the number of steps |
|
243
|
|
|
raise ValueError('No information about the number of steps ' |
|
244
|
|
|
'provided. Either provide a value for ' |
|
245
|
|
|
'n_steps argument of scan or provide an input ' |
|
246
|
|
|
'sequence') |
|
247
|
|
|
|
|
248
|
|
|
# If the user has provided the number of steps, do that regardless ( and |
|
249
|
|
|
# raise an error if the sequences are not long enough ) |
|
250
|
|
|
if scan_utils.isNaN_or_Inf_or_None(n_steps): |
|
251
|
|
|
actual_n_steps = lengths_vec[0] |
|
252
|
|
|
for contestant in lengths_vec[1:]: |
|
253
|
|
|
actual_n_steps = tensor.minimum(actual_n_steps, contestant) |
|
254
|
|
|
else: |
|
255
|
|
|
actual_n_steps = tensor.as_tensor(n_steps) |
|
256
|
|
|
|
|
257
|
|
|
# Add names -- it helps a lot when debugging |
|
258
|
|
|
|
|
259
|
|
|
for (nw_seq, seq) in zip(scan_seqs, seqs): |
|
260
|
|
|
if getattr(seq['input'], 'name', None) is not None: |
|
261
|
|
|
nw_seq.name = seq['input'].name + '[%d:]' % k |
|
262
|
|
|
|
|
263
|
|
|
scan_seqs = [seq[:actual_n_steps] for seq in scan_seqs] |
|
264
|
|
|
# Conventions : |
|
265
|
|
|
# mit_mot = multiple input taps, multiple output taps ( only provided |
|
266
|
|
|
# by the gradient function ) |
|
267
|
|
|
# mit_sot = multiple input taps, single output tap (t + 0) |
|
268
|
|
|
# sit_sot = single input tap, single output tap (t + 0) |
|
269
|
|
|
# nit_sot = no input tap, single output tap (t + 0) |
|
270
|
|
|
|
|
271
|
|
|
# MIT_MOT -- not provided by the user only by the grad function |
|
272
|
|
|
n_mit_mot = 0 |
|
273
|
|
|
n_mit_mot_outs = 0 |
|
274
|
|
|
mit_mot_scan_inputs = [] |
|
275
|
|
|
mit_mot_inner_inputs = [] |
|
276
|
|
|
mit_mot_inner_outputs = [] |
|
277
|
|
|
mit_mot_out_slices = [] |
|
278
|
|
|
mit_mot_rightOrder = [] |
|
279
|
|
|
|
|
280
|
|
|
# SIT_SOT -- provided by the user |
|
281
|
|
|
n_mit_sot = 0 |
|
282
|
|
|
mit_sot_scan_inputs = [] |
|
283
|
|
|
mit_sot_inner_inputs = [] |
|
284
|
|
|
mit_sot_inner_slices = [] |
|
285
|
|
|
mit_sot_inner_outputs = [] |
|
286
|
|
|
mit_sot_return_steps = OrderedDict() |
|
287
|
|
|
mit_sot_tap_array = [] |
|
288
|
|
|
mit_sot_rightOrder = [] |
|
289
|
|
|
|
|
290
|
|
|
n_sit_sot = 0 |
|
291
|
|
|
sit_sot_scan_inputs = [] |
|
292
|
|
|
sit_sot_inner_inputs = [] |
|
293
|
|
|
sit_sot_inner_slices = [] |
|
294
|
|
|
sit_sot_inner_outputs = [] |
|
295
|
|
|
sit_sot_return_steps = OrderedDict() |
|
296
|
|
|
sit_sot_rightOrder = [] |
|
297
|
|
|
|
|
298
|
|
|
# go through outputs picking up time slices as needed |
|
299
|
|
|
for i, init_out in enumerate(outs_info): |
|
300
|
|
|
# Note that our convention dictates that if an output uses |
|
301
|
|
|
# just the previous time step, as a initial state we will only |
|
302
|
|
|
# provide a tensor of the same dimension as one time step; This |
|
303
|
|
|
# makes code much cleaner for those who do not use taps. Otherwise |
|
304
|
|
|
# they would always had to shape_padleft the initial state .. |
|
305
|
|
|
# which is ugly |
|
306
|
|
|
if init_out.get('taps', None) == [-1]: |
|
307
|
|
|
|
|
308
|
|
|
actual_arg = init_out['initial'] |
|
309
|
|
|
if not isinstance(actual_arg, tensor.Variable): |
|
310
|
|
|
actual_arg = tensor.as_tensor_variable(actual_arg) |
|
311
|
|
|
arg = safe_new(actual_arg) |
|
312
|
|
|
if isinstance(arg, tensor.Constant): |
|
313
|
|
|
# safe new returns a clone of the constants, but that is not |
|
314
|
|
|
# what we need for initial states |
|
315
|
|
|
arg = arg.type() |
|
316
|
|
|
|
|
317
|
|
|
# Try to transfer test_value to the new variable |
|
318
|
|
|
if config.compute_test_value != 'off': |
|
319
|
|
|
try: |
|
320
|
|
|
arg.tag.test_value = gof.Op._get_test_value(actual_arg) |
|
321
|
|
|
except AttributeError as e: |
|
322
|
|
|
if config.compute_test_value != 'ignore': |
|
323
|
|
|
# No need to print a warning or raise an error now, |
|
324
|
|
|
# it will be done when fn will be called. |
|
325
|
|
|
_logger.info(('Cannot compute test value for the ' |
|
326
|
|
|
'inner function of scan, input value missing %s'), |
|
327
|
|
|
e) |
|
328
|
|
|
|
|
329
|
|
|
if getattr(init_out['initial'], 'name', None) is not None: |
|
330
|
|
|
arg.name = init_out['initial'].name + '[t-1]' |
|
331
|
|
|
|
|
332
|
|
|
# We need now to allocate space for storing the output and copy |
|
333
|
|
|
# the initial state over. We do this using the expand function |
|
334
|
|
|
# defined in scan utils |
|
335
|
|
|
sit_sot_scan_inputs.append( |
|
336
|
|
|
scan_utils.expand_empty( |
|
337
|
|
|
tensor.unbroadcast( |
|
338
|
|
|
tensor.shape_padleft(actual_arg), 0), |
|
339
|
|
|
actual_n_steps |
|
340
|
|
|
)) |
|
341
|
|
|
|
|
342
|
|
|
sit_sot_inner_slices.append(actual_arg) |
|
343
|
|
|
if i in return_steps: |
|
344
|
|
|
sit_sot_return_steps[n_sit_sot] = return_steps[i] |
|
345
|
|
|
sit_sot_inner_inputs.append(arg) |
|
346
|
|
|
sit_sot_rightOrder.append(i) |
|
347
|
|
|
n_sit_sot += 1 |
|
348
|
|
|
|
|
349
|
|
|
elif init_out.get('taps', None): |
|
350
|
|
|
|
|
351
|
|
|
if numpy.any(numpy.array(init_out.get('taps', [])) > 0): |
|
352
|
|
|
# Make sure we do not have requests for future values of a |
|
353
|
|
|
# sequence we can not provide such values |
|
354
|
|
|
raise ValueError('Can not use future taps of outputs', |
|
355
|
|
|
init_out) |
|
356
|
|
|
# go through the taps |
|
357
|
|
|
mintap = abs(numpy.min(init_out['taps'])) |
|
358
|
|
|
mit_sot_tap_array.append(init_out['taps']) |
|
359
|
|
|
idx_offset = abs(numpy.min(init_out['taps'])) |
|
360
|
|
|
# Sequence |
|
361
|
|
|
mit_sot_scan_inputs.append( |
|
362
|
|
|
scan_utils.expand_empty(init_out['initial'][:mintap], |
|
363
|
|
|
actual_n_steps)) |
|
364
|
|
|
|
|
365
|
|
|
if i in return_steps: |
|
366
|
|
|
mit_sot_return_steps[n_mit_sot] = return_steps[i] |
|
367
|
|
|
mit_sot_rightOrder.append(i) |
|
368
|
|
|
n_mit_sot += 1 |
|
369
|
|
|
for k in init_out['taps']: |
|
370
|
|
|
# create a new slice |
|
371
|
|
|
actual_nw_slice = init_out['initial'][k + mintap] |
|
372
|
|
|
_init_out_var = tensor.as_tensor_variable(init_out['initial']) |
|
373
|
|
|
_init_out_var_slice = _init_out_var[k + mintap] |
|
374
|
|
|
nw_slice = _init_out_var_slice.type() |
|
375
|
|
|
|
|
376
|
|
|
# Try to transfer test_value to the new variable |
|
377
|
|
|
if config.compute_test_value != 'off': |
|
378
|
|
|
try: |
|
379
|
|
|
nw_slice.tag.test_value = gof.Op._get_test_value( |
|
380
|
|
|
_init_out_var_slice) |
|
381
|
|
|
except AttributeError as e: |
|
382
|
|
|
if config.compute_test_value != 'ignore': |
|
383
|
|
|
# No need to print a warning or raise an error now, |
|
384
|
|
|
# it will be done when fn will be called. |
|
385
|
|
|
_logger.info(('Cannot compute test value for ' |
|
386
|
|
|
'the inner function of scan, input value ' |
|
387
|
|
|
'missing. %s'), e) |
|
388
|
|
|
|
|
389
|
|
|
# give it a name or debugging and pretty printing |
|
390
|
|
|
if getattr(init_out['initial'], 'name', None) is not None: |
|
391
|
|
|
if k > 0: |
|
392
|
|
|
nw_slice.name = (init_out['initial'].name + |
|
393
|
|
|
'[t+%d]' % k) |
|
394
|
|
|
elif k == 0: |
|
395
|
|
|
nw_slice.name = init_out['initial'].name + '[t]' |
|
396
|
|
|
else: |
|
397
|
|
|
nw_slice.name = (init_out['initial'].name + |
|
398
|
|
|
'[t%d]' % k) |
|
399
|
|
|
mit_sot_inner_inputs.append(nw_slice) |
|
400
|
|
|
mit_sot_inner_slices.append(actual_nw_slice) |
|
401
|
|
|
# NOTE: there is another case, in which we do not want to provide |
|
402
|
|
|
# any previous value of the output to the inner function (i.e. |
|
403
|
|
|
# a map); in that case we do not have to do anything .. |
|
404
|
|
|
|
|
405
|
|
|
# Re-order args |
|
406
|
|
|
max_mit_sot = numpy.max([-1] + mit_sot_rightOrder) + 1 |
|
407
|
|
|
max_sit_sot = numpy.max([-1] + sit_sot_rightOrder) + 1 |
|
408
|
|
|
n_elems = numpy.max([max_mit_sot, max_sit_sot]) |
|
409
|
|
|
_ordered_args = [[] for x in xrange(n_elems)] |
|
410
|
|
|
offset = 0 |
|
411
|
|
|
for idx in xrange(n_mit_sot): |
|
412
|
|
|
n_inputs = len(mit_sot_tap_array[idx]) |
|
413
|
|
|
if n_fixed_steps in [1, -1]: |
|
414
|
|
|
_ordered_args[mit_sot_rightOrder[idx]] = \ |
|
415
|
|
|
mit_sot_inner_slices[offset:offset + n_inputs] |
|
416
|
|
|
else: |
|
417
|
|
|
_ordered_args[mit_sot_rightOrder[idx]] = \ |
|
418
|
|
|
mit_sot_inner_inputs[offset:offset + n_inputs] |
|
419
|
|
|
offset += n_inputs |
|
420
|
|
|
|
|
421
|
|
|
for idx in xrange(n_sit_sot): |
|
422
|
|
|
if n_fixed_steps in [1, -1]: |
|
423
|
|
|
_ordered_args[sit_sot_rightOrder[idx]] = \ |
|
424
|
|
|
[sit_sot_inner_slices[idx]] |
|
425
|
|
|
else: |
|
426
|
|
|
_ordered_args[sit_sot_rightOrder[idx]] = \ |
|
427
|
|
|
[sit_sot_inner_inputs[idx]] |
|
428
|
|
|
|
|
429
|
|
|
ordered_args = [] |
|
430
|
|
|
for ls in _ordered_args: |
|
431
|
|
|
ordered_args += ls |
|
432
|
|
|
if n_fixed_steps in [1, -1]: |
|
433
|
|
|
args = (inner_slices + |
|
434
|
|
|
ordered_args + |
|
435
|
|
|
non_seqs) |
|
436
|
|
|
|
|
437
|
|
|
else: |
|
438
|
|
|
args = (inner_seqs + |
|
439
|
|
|
ordered_args + |
|
440
|
|
|
non_seqs) |
|
441
|
|
|
|
|
442
|
|
|
# add only the non-shared variables and non-constants to the arguments of |
|
443
|
|
|
# the dummy function [ a function should not get shared variables or |
|
444
|
|
|
# constants as input ] |
|
445
|
|
|
dummy_args = [arg for arg in args |
|
446
|
|
|
if (not isinstance(arg, SharedVariable) and |
|
447
|
|
|
not isinstance(arg, tensor.Constant))] |
|
448
|
|
|
################################################################## P1< |
|
449
|
|
|
return dummy_args, locals() |
|
450
|
|
|
|
|
451
|
|
|
|
|
452
|
|
|
def finish_scan(fn_outputs, local_vars): |
|
453
|
|
|
|
|
454
|
|
|
n_fixed_steps = local_vars["n_fixed_steps"] |
|
455
|
|
|
return_steps = local_vars["return_steps"] |
|
456
|
|
|
non_seqs = local_vars["non_seqs"] |
|
457
|
|
|
dummy_args = local_vars["dummy_args"] |
|
458
|
|
|
args = local_vars["args"] |
|
459
|
|
|
outs_info = local_vars["outs_info"] |
|
460
|
|
|
n_outs = local_vars["n_outs"] |
|
461
|
|
|
mit_sot_inner_outputs = local_vars["mit_sot_inner_outputs"] |
|
462
|
|
|
sit_sot_inner_outputs = local_vars["sit_sot_inner_outputs"] |
|
463
|
|
|
sit_sot_scan_inputs = local_vars["sit_sot_scan_inputs"] |
|
464
|
|
|
sit_sot_inner_inputs = local_vars["sit_sot_inner_inputs"] |
|
465
|
|
|
actual_n_steps = local_vars["actual_n_steps"] |
|
466
|
|
|
sit_sot_rightOrder = local_vars["sit_sot_rightOrder"] |
|
467
|
|
|
strict = local_vars["strict"] |
|
468
|
|
|
non_sequences = local_vars["non_sequences"] |
|
469
|
|
|
inner_seqs = local_vars["inner_seqs"] |
|
470
|
|
|
mit_mot_inner_inputs = local_vars["mit_mot_inner_inputs"] |
|
471
|
|
|
mit_sot_inner_inputs = local_vars["mit_sot_inner_inputs"] |
|
472
|
|
|
mit_mot_inner_outputs = local_vars["mit_mot_inner_outputs"] |
|
473
|
|
|
mit_sot_tap_array = local_vars["mit_sot_tap_array"] |
|
474
|
|
|
allow_gc = local_vars["allow_gc"] |
|
475
|
|
|
n_seqs = local_vars["n_seqs"] |
|
476
|
|
|
n_mit_mot_outs = local_vars["n_mit_mot_outs"] |
|
477
|
|
|
mit_mot_out_slices = local_vars["mit_mot_out_slices"] |
|
478
|
|
|
truncate_gradient = local_vars["truncate_gradient"] |
|
479
|
|
|
name = local_vars["name"] |
|
480
|
|
|
mode = local_vars["mode"] |
|
481
|
|
|
profile = local_vars["profile"] |
|
482
|
|
|
scan_seqs = local_vars["scan_seqs"] |
|
483
|
|
|
mit_mot_scan_inputs = local_vars["mit_mot_scan_inputs"] |
|
484
|
|
|
mit_sot_scan_inputs = local_vars["mit_sot_scan_inputs"] |
|
485
|
|
|
n_mit_mot = local_vars["n_mit_mot"] |
|
486
|
|
|
mit_sot_return_steps = local_vars["mit_sot_return_steps"] |
|
487
|
|
|
n_mit_sot = local_vars["n_mit_sot"] |
|
488
|
|
|
sit_sot_return_steps = local_vars["sit_sot_return_steps"] |
|
489
|
|
|
mit_sot_rightOrder = local_vars["mit_sot_rightOrder"] |
|
490
|
|
|
|
|
491
|
|
|
condition, outputs, updates = scan_utils.get_updates_and_outputs(fn_outputs) |
|
492
|
|
|
################################################################## P2> |
|
493
|
|
|
if condition is not None: |
|
494
|
|
|
as_while = True |
|
495
|
|
|
else: |
|
496
|
|
|
as_while = False |
|
497
|
|
|
## |
|
498
|
|
|
# Step 3. Check if we actually need scan and remove it if we don't |
|
499
|
|
|
## |
|
500
|
|
|
|
|
501
|
|
|
if n_fixed_steps in [1, -1]: |
|
502
|
|
|
# We do not need to use the scan op anymore, so we can just return |
|
503
|
|
|
# the outputs and updates we have |
|
504
|
|
|
if condition is not None: |
|
505
|
|
|
_logger.warning(('When the number of steps is fixed and equal ' |
|
506
|
|
|
'to 1, the provided stopping condition, ', |
|
507
|
|
|
str(condition), ' is ignored')) |
|
508
|
|
|
|
|
509
|
|
|
for pos, inner_out in enumerate(outputs): |
|
510
|
|
|
# we need to see if we need to pad our sequences with an |
|
511
|
|
|
# unbroadcastable dimension; case example : we return an |
|
512
|
|
|
# output for which we want all intermediate. If n_steps is 1 |
|
513
|
|
|
# then, if we return the output as given by the innner function |
|
514
|
|
|
# this will represent only a slice and it will have one |
|
515
|
|
|
# dimension less. |
|
516
|
|
|
if (isinstance(inner_out.type, tensor.TensorType) and |
|
517
|
|
|
return_steps.get(pos, 0) != 1): |
|
518
|
|
|
outputs[pos] = tensor.unbroadcast( |
|
519
|
|
|
tensor.shape_padleft(inner_out), 0) |
|
520
|
|
|
if len(outputs) == 1: |
|
521
|
|
|
outputs = outputs[0] |
|
522
|
|
|
|
|
523
|
|
|
return (outputs, updates) |
|
524
|
|
|
|
|
525
|
|
|
## |
|
526
|
|
|
# Step 4. Compile the dummy function |
|
527
|
|
|
## |
|
528
|
|
|
|
|
529
|
|
|
# We can now compile a dummy function just to see what shared variable |
|
530
|
|
|
# we have and what are their update rules (note that the user has |
|
531
|
|
|
# the option not to pass the shared variable to scan, so we need to |
|
532
|
|
|
# pick them manually and add them to scan) |
|
533
|
|
|
# make the compilation as fast as possible by not applying any |
|
534
|
|
|
# optimization or conversion to C [ note this region is not important |
|
535
|
|
|
# for performance so we can do stuff as unoptimal as we wish ] |
|
536
|
|
|
|
|
537
|
|
|
# extract still missing inputs (there still might be so) and add them |
|
538
|
|
|
# as non sequences at the end of our args |
|
539
|
|
|
fake_nonseqs = [x.type() for x in non_seqs] |
|
540
|
|
|
fake_outputs = scan_utils.clone(outputs, |
|
541
|
|
|
replace=OrderedDict(izip(non_seqs, |
|
542
|
|
|
fake_nonseqs))) |
|
543
|
|
|
all_inputs = ifilter( |
|
544
|
|
|
lambda x: (isinstance(x, gof.Variable) and |
|
545
|
|
|
not isinstance(x, SharedVariable) and |
|
546
|
|
|
not isinstance(x, gof.Constant)), |
|
547
|
|
|
gof.graph.inputs(fake_outputs)) |
|
548
|
|
|
extra_inputs = [x for x in all_inputs if x not in args + fake_nonseqs] |
|
549
|
|
|
non_seqs += extra_inputs |
|
550
|
|
|
# Note we do not use all_inputs directly since the order of variables |
|
551
|
|
|
# in args is quite important |
|
552
|
|
|
dummy_args += extra_inputs |
|
553
|
|
|
|
|
554
|
|
|
dummy_outs = outputs |
|
555
|
|
|
if condition is not None: |
|
556
|
|
|
dummy_outs.append(condition) |
|
557
|
|
|
dummy_f = function(dummy_args, |
|
558
|
|
|
dummy_outs, |
|
559
|
|
|
updates=updates, |
|
560
|
|
|
mode=compile.mode.Mode(linker='py', |
|
561
|
|
|
optimizer=None), |
|
562
|
|
|
on_unused_input='ignore', |
|
563
|
|
|
profile=False) |
|
564
|
|
|
|
|
565
|
|
|
## |
|
566
|
|
|
# Step 5. Re-arange inputs of scan into a more strict order |
|
567
|
|
|
## |
|
568
|
|
|
|
|
569
|
|
|
# Step 5.0 Check the outputs of the dummy function to see if they |
|
570
|
|
|
# match with user provided data |
|
571
|
|
|
|
|
572
|
|
|
# if the number of outputs to the function does not match the number of |
|
573
|
|
|
# assumed outputs until now (provided by the user) there can be |
|
574
|
|
|
# only one explanation: No information is provided for any of the |
|
575
|
|
|
# outputs (i.e. we are dealing with a map) |
|
576
|
|
|
tmp_dummy_f_outs = len(dummy_f.maker.outputs) |
|
577
|
|
|
if as_while: |
|
578
|
|
|
tmp_dummy_f_outs -= 1 |
|
579
|
|
|
if not (tmp_dummy_f_outs == n_outs or outs_info == []): |
|
580
|
|
|
raise ValueError('Please provide None as outputs_info for ' |
|
581
|
|
|
'any output that does not feed back into ' |
|
582
|
|
|
'scan (i.e. it behaves like a map) ') |
|
583
|
|
|
|
|
584
|
|
|
if outs_info == []: |
|
585
|
|
|
n_outs = len(dummy_f.maker.outputs) |
|
586
|
|
|
if as_while: |
|
587
|
|
|
n_outs = n_outs - 1 |
|
588
|
|
|
outs_info = [OrderedDict() for x in xrange(n_outs)] |
|
589
|
|
|
|
|
590
|
|
|
# Step 5.1 Outputs with taps different then -1 |
|
591
|
|
|
|
|
592
|
|
|
for i, out in enumerate(outs_info): |
|
593
|
|
|
if 'taps' in out and out['taps'] != [-1]: |
|
594
|
|
|
mit_sot_inner_outputs.append(outputs[i]) |
|
595
|
|
|
|
|
596
|
|
|
# Step 5.2 Outputs with tap equal to -1 |
|
597
|
|
|
for i, out in enumerate(outs_info): |
|
598
|
|
|
if 'taps' in out and out['taps'] == [-1]: |
|
599
|
|
|
sit_sot_inner_outputs.append(outputs[i]) |
|
600
|
|
|
|
|
601
|
|
|
# Step 5.3 Outputs that correspond to update rules of shared variables |
|
602
|
|
|
givens = OrderedDict() |
|
603
|
|
|
n_shared_outs = 0 |
|
604
|
|
|
shared_scan_inputs = [] |
|
605
|
|
|
shared_inner_inputs = [] |
|
606
|
|
|
shared_inner_outputs = [] |
|
607
|
|
|
sit_sot_shared = [] |
|
608
|
|
|
for input in dummy_f.maker.expanded_inputs: |
|
609
|
|
|
if isinstance(input.variable, SharedVariable) and input.update: |
|
610
|
|
|
new_var = safe_new(input.variable) |
|
611
|
|
|
if getattr(input.variable, 'name', None) is not None: |
|
612
|
|
|
new_var.name = input.variable.name + '_copy' |
|
613
|
|
|
if isinstance(new_var.type, ops.expandable_types): |
|
614
|
|
|
sit_sot_inner_inputs.append(new_var) |
|
615
|
|
|
sit_sot_scan_inputs.append( |
|
616
|
|
|
scan_utils.expand_empty( |
|
617
|
|
|
tensor.unbroadcast( |
|
618
|
|
|
tensor.shape_padleft(input.variable), 0), |
|
619
|
|
|
actual_n_steps)) |
|
620
|
|
|
tensor_update = tensor.as_tensor_variable(input.update) |
|
621
|
|
|
sit_sot_inner_outputs.append(tensor_update) |
|
622
|
|
|
# Not that pos is not a negative index. The sign of pos is used |
|
623
|
|
|
# as a flag to indicate if this output should be part of the |
|
624
|
|
|
# update rules or part of the standard outputs of scan. |
|
625
|
|
|
# If `pos` is positive than it corresponds to the standard |
|
626
|
|
|
# outputs of scan and it refers to output of index `pos`. If `pos` |
|
627
|
|
|
# is negative that it corresponds to update rules of scan and it |
|
628
|
|
|
# refers to update rule of index -1 - `pos`. |
|
629
|
|
|
sit_sot_rightOrder.append(-1 - len(sit_sot_shared)) |
|
630
|
|
|
sit_sot_shared.append(input.variable) |
|
631
|
|
|
givens[input.variable] = new_var |
|
632
|
|
|
|
|
633
|
|
|
else: |
|
634
|
|
|
shared_inner_inputs.append(new_var) |
|
635
|
|
|
shared_scan_inputs.append(input.variable) |
|
636
|
|
|
shared_inner_outputs.append(input.update) |
|
637
|
|
|
givens[input.variable] = new_var |
|
638
|
|
|
n_shared_outs += 1 |
|
639
|
|
|
n_sit_sot = len(sit_sot_inner_inputs) |
|
640
|
|
|
# Step 5.4 Outputs with no taps used in the input |
|
641
|
|
|
n_nit_sot = 0 |
|
642
|
|
|
nit_sot_inner_outputs = [] |
|
643
|
|
|
nit_sot_return_steps = OrderedDict() |
|
644
|
|
|
nit_sot_rightOrder = [] |
|
645
|
|
|
for i, out in enumerate(outs_info): |
|
646
|
|
|
if not 'taps' in out: |
|
647
|
|
|
nit_sot_inner_outputs.append(outputs[i]) |
|
648
|
|
|
if i in return_steps: |
|
649
|
|
|
nit_sot_return_steps[n_nit_sot] = return_steps[i] |
|
650
|
|
|
nit_sot_rightOrder.append(i) |
|
651
|
|
|
n_nit_sot += 1 |
|
652
|
|
|
|
|
653
|
|
|
# Step 5.5 all other arguments including extra inputs |
|
654
|
|
|
other_scan_args = [] |
|
655
|
|
|
other_inner_args = [] |
|
656
|
|
|
|
|
657
|
|
|
other_scan_args += [arg for arg in non_seqs |
|
658
|
|
|
if (not isinstance(arg, SharedVariable) and |
|
659
|
|
|
not isinstance(arg, tensor.Constant))] |
|
660
|
|
|
|
|
661
|
|
|
# Step 5.6 all shared variables with no update rules |
|
662
|
|
|
other_inner_args += [safe_new(arg, '_copy') for arg in non_seqs |
|
663
|
|
|
if (not isinstance(arg, SharedVariable) and |
|
664
|
|
|
not isinstance(arg, tensor.Constant))] |
|
665
|
|
|
|
|
666
|
|
|
givens.update(OrderedDict(izip(other_scan_args, other_inner_args))) |
|
667
|
|
|
|
|
668
|
|
|
if strict: |
|
669
|
|
|
non_seqs_set = set(non_sequences if non_sequences is not None else []) |
|
670
|
|
|
|
|
671
|
|
|
other_shared_scan_args = [arg.variable for arg |
|
672
|
|
|
in dummy_f.maker.expanded_inputs |
|
673
|
|
|
if (isinstance(arg.variable, SharedVariable) and |
|
674
|
|
|
not arg.update and |
|
675
|
|
|
arg.variable in non_seqs_set)] |
|
676
|
|
|
other_shared_inner_args = [safe_new(arg.variable, '_copy') for arg |
|
677
|
|
|
in dummy_f.maker.expanded_inputs |
|
678
|
|
|
if (isinstance(arg.variable, SharedVariable) and |
|
679
|
|
|
not arg.update and |
|
680
|
|
|
arg.variable in non_seqs_set)] |
|
681
|
|
|
else: |
|
682
|
|
|
other_shared_scan_args = [arg.variable for arg |
|
683
|
|
|
in dummy_f.maker.expanded_inputs |
|
684
|
|
|
if (isinstance(arg.variable, SharedVariable) and |
|
685
|
|
|
not arg.update)] |
|
686
|
|
|
other_shared_inner_args = [safe_new(arg.variable, '_copy') for arg |
|
687
|
|
|
in dummy_f.maker.expanded_inputs |
|
688
|
|
|
if (isinstance(arg.variable, SharedVariable) and |
|
689
|
|
|
not arg.update)] |
|
690
|
|
|
givens.update(OrderedDict(izip(other_shared_scan_args, |
|
691
|
|
|
other_shared_inner_args))) |
|
692
|
|
|
|
|
693
|
|
|
## |
|
694
|
|
|
# Step 6. Re-order the outputs and clone them replacing things |
|
695
|
|
|
# using the givens |
|
696
|
|
|
## |
|
697
|
|
|
inner_inputs = (inner_seqs + |
|
698
|
|
|
mit_mot_inner_inputs + |
|
699
|
|
|
mit_sot_inner_inputs + |
|
700
|
|
|
sit_sot_inner_inputs + |
|
701
|
|
|
shared_inner_inputs + |
|
702
|
|
|
other_shared_inner_args + |
|
703
|
|
|
other_inner_args) |
|
704
|
|
|
|
|
705
|
|
|
inner_outs = (mit_mot_inner_outputs + |
|
706
|
|
|
mit_sot_inner_outputs + |
|
707
|
|
|
sit_sot_inner_outputs + |
|
708
|
|
|
nit_sot_inner_outputs + |
|
709
|
|
|
shared_inner_outputs) |
|
710
|
|
|
if condition is not None: |
|
711
|
|
|
inner_outs.append(condition) |
|
712
|
|
|
# Cuda and Gpuarray are imported here, instead of being imported on top of |
|
713
|
|
|
# the file because that would force on the user some dependencies that we |
|
714
|
|
|
# might do not want to. Currently we are working on removing the |
|
715
|
|
|
# dependencies on sandbox code completeley. |
|
716
|
|
|
from theano.sandbox import cuda, gpuarray |
|
717
|
|
|
if cuda.cuda_available or gpuarray.pygpu_activated: |
|
718
|
|
|
# very often we end up in this situation when we want to |
|
719
|
|
|
# replace w with w_copy, where w is a GPU variable |
|
720
|
|
|
# and w_copy is TensorType. This is caused because shared |
|
721
|
|
|
# variables are put on GPU right aways >:| , |
|
722
|
|
|
new_givens = OrderedDict() |
|
723
|
|
|
|
|
724
|
|
|
for w, w_copy in iteritems(givens): |
|
725
|
|
|
if ((isinstance(w.type, cuda.CudaNdarrayType) or |
|
726
|
|
|
isinstance(w.type, gpuarray.GpuArrayType)) and |
|
727
|
|
|
isinstance(w_copy.type, tensor.TensorType)): |
|
728
|
|
|
for o in inner_outs: |
|
729
|
|
|
new_givens = traverse(o, w, w_copy, new_givens) |
|
730
|
|
|
else: |
|
731
|
|
|
new_givens[w] = w_copy |
|
732
|
|
|
else: |
|
733
|
|
|
new_givens = givens |
|
734
|
|
|
|
|
735
|
|
|
new_outs = scan_utils.clone(inner_outs, replace=new_givens) |
|
736
|
|
|
|
|
737
|
|
|
## |
|
738
|
|
|
# Step 7. Create the Scan Op |
|
739
|
|
|
## |
|
740
|
|
|
|
|
741
|
|
|
tap_array = mit_sot_tap_array + [[-1] for x in xrange(n_sit_sot)] |
|
742
|
|
|
if allow_gc is None: |
|
743
|
|
|
allow_gc = config.scan.allow_gc |
|
744
|
|
|
info = OrderedDict() |
|
745
|
|
|
|
|
746
|
|
|
info['tap_array'] = tap_array |
|
747
|
|
|
info['n_seqs'] = n_seqs |
|
748
|
|
|
info['n_mit_mot'] = n_mit_mot |
|
749
|
|
|
info['n_mit_mot_outs'] = n_mit_mot_outs |
|
750
|
|
|
info['mit_mot_out_slices'] = mit_mot_out_slices |
|
751
|
|
|
info['n_mit_sot'] = n_mit_sot |
|
752
|
|
|
info['n_sit_sot'] = n_sit_sot |
|
753
|
|
|
info['n_shared_outs'] = n_shared_outs |
|
754
|
|
|
info['n_nit_sot'] = n_nit_sot |
|
755
|
|
|
info['truncate_gradient'] = truncate_gradient |
|
756
|
|
|
info['name'] = name |
|
757
|
|
|
info['mode'] = mode |
|
758
|
|
|
info['destroy_map'] = OrderedDict() |
|
759
|
|
|
info['gpu'] = False |
|
760
|
|
|
info['as_while'] = as_while |
|
761
|
|
|
info['profile'] = profile |
|
762
|
|
|
info['allow_gc'] = allow_gc |
|
763
|
|
|
info['strict'] = strict |
|
764
|
|
|
|
|
765
|
|
|
local_op = scan_op.Scan(inner_inputs, new_outs, info) |
|
766
|
|
|
|
|
767
|
|
|
## |
|
768
|
|
|
# Step 8. Compute the outputs using the scan op |
|
769
|
|
|
## |
|
770
|
|
|
_scan_inputs = (scan_seqs + |
|
771
|
|
|
mit_mot_scan_inputs + |
|
772
|
|
|
mit_sot_scan_inputs + |
|
773
|
|
|
sit_sot_scan_inputs + |
|
774
|
|
|
shared_scan_inputs + |
|
775
|
|
|
[actual_n_steps for x in xrange(n_nit_sot)] + |
|
776
|
|
|
other_shared_scan_args + |
|
777
|
|
|
other_scan_args) |
|
778
|
|
|
|
|
779
|
|
|
scan_inputs = [] |
|
780
|
|
|
for arg in [actual_n_steps] + _scan_inputs: |
|
781
|
|
|
try: |
|
782
|
|
|
arg = tensor.as_tensor_variable(arg) |
|
783
|
|
|
except TypeError: |
|
784
|
|
|
# This happens for Random States for e.g. but it is a good way |
|
785
|
|
|
# to make sure no input is a cuda ndarrays |
|
786
|
|
|
pass |
|
787
|
|
|
scan_inputs += [arg] |
|
788
|
|
|
scan_outs = local_op(*scan_inputs) |
|
789
|
|
|
if type(scan_outs) not in (list, tuple): |
|
790
|
|
|
scan_outs = [scan_outs] |
|
791
|
|
|
## |
|
792
|
|
|
# Step 9. Figure out which outs are update rules for shared variables |
|
793
|
|
|
# and so on ... |
|
794
|
|
|
## |
|
795
|
|
|
|
|
796
|
|
|
update_map = OrderedUpdates() |
|
797
|
|
|
|
|
798
|
|
|
def remove_dimensions(outs, steps_return, offsets=None): |
|
799
|
|
|
out_ls = [] |
|
800
|
|
|
for idx, out in enumerate(outs): |
|
801
|
|
|
if idx in steps_return: |
|
802
|
|
|
if steps_return[idx] > 1: |
|
803
|
|
|
out_ls.append(out[-steps_return[idx]:]) |
|
804
|
|
|
else: |
|
805
|
|
|
out_ls.append(out[-1]) |
|
806
|
|
|
else: |
|
807
|
|
|
if offsets is None: |
|
808
|
|
|
out_ls.append(out) |
|
809
|
|
|
else: |
|
810
|
|
|
out_ls.append(out[offsets[idx]:]) |
|
811
|
|
|
return out_ls |
|
812
|
|
|
|
|
813
|
|
|
offset = n_mit_mot |
|
814
|
|
|
offsets = [abs(numpy.min(x)) for x in mit_sot_tap_array] |
|
815
|
|
|
mit_sot_outs = remove_dimensions( |
|
816
|
|
|
scan_outs[offset:offset + n_mit_sot], |
|
817
|
|
|
mit_sot_return_steps, |
|
818
|
|
|
offsets) |
|
819
|
|
|
|
|
820
|
|
|
offset += n_mit_sot |
|
821
|
|
|
offsets = [1 for x in xrange(n_sit_sot)] |
|
822
|
|
|
sit_sot_outs = remove_dimensions( |
|
823
|
|
|
scan_outs[offset:offset + n_sit_sot], |
|
824
|
|
|
sit_sot_return_steps, |
|
825
|
|
|
offsets) |
|
826
|
|
|
|
|
827
|
|
|
offset += n_sit_sot |
|
828
|
|
|
nit_sot_outs = remove_dimensions( |
|
829
|
|
|
scan_outs[offset:offset + n_nit_sot], |
|
830
|
|
|
nit_sot_return_steps) |
|
831
|
|
|
|
|
832
|
|
|
offset += n_nit_sot |
|
833
|
|
|
for idx, update_rule in enumerate( |
|
834
|
|
|
scan_outs[offset:offset + n_shared_outs]): |
|
835
|
|
|
update_map[shared_scan_inputs[idx]] = update_rule |
|
836
|
|
|
|
|
837
|
|
|
_scan_out_list = (mit_sot_outs + |
|
838
|
|
|
sit_sot_outs + |
|
839
|
|
|
nit_sot_outs) |
|
840
|
|
|
# Step 10. I need to reorder the outputs to be in the order expected by |
|
841
|
|
|
# the user |
|
842
|
|
|
rightOrder = (mit_sot_rightOrder + |
|
843
|
|
|
sit_sot_rightOrder + |
|
844
|
|
|
nit_sot_rightOrder) |
|
845
|
|
|
scan_out_list = [None] * len(rightOrder) |
|
846
|
|
|
for idx, pos in enumerate(rightOrder): |
|
847
|
|
|
if pos >= 0: |
|
848
|
|
|
scan_out_list[pos] = _scan_out_list[idx] |
|
849
|
|
|
else: |
|
850
|
|
|
# Not that pos is not a negative index. The sign of pos is used |
|
851
|
|
|
# as a flag to indicate if this output should be part of the |
|
852
|
|
|
# update rules or part of the standard outputs of scan. |
|
853
|
|
|
# If `pos` is positive than it corresponds to the standard |
|
854
|
|
|
# outputs of scan and it refers to output of index `pos`. If `pos` |
|
855
|
|
|
# is negative that it corresponds to update rules of scan and it |
|
856
|
|
|
# refers to update rule of index -1 - `pos`. |
|
857
|
|
|
update_map[sit_sot_shared[abs(pos) - 1]] = _scan_out_list[idx][-1] |
|
858
|
|
|
scan_out_list = [x for x in scan_out_list if x is not None] |
|
859
|
|
|
################################################################## P2< |
|
860
|
|
|
return (scan_out_list, update_map) |