1
|
|
|
#!/usr/bin/env python |
2
|
|
|
# -*- coding: utf-8 -*- |
3
|
|
|
|
4
|
|
|
import theano.tensor as T |
5
|
|
|
from . import NeuralLayer |
6
|
|
|
from dense import Dense |
7
|
|
|
|
8
|
|
|
class Maxout(NeuralLayer): |
9
|
|
|
""" |
10
|
|
|
Maxout activation unit. |
11
|
|
|
- http://arxiv.org/pdf/1302.4389.pdf |
12
|
|
|
""" |
13
|
|
|
def __init__(self, output_dim=None, num_pieces=4, init=None, linear_transform=True): |
14
|
|
|
""" |
15
|
|
|
:param num_pieces: pieces of sub maps |
16
|
|
|
""" |
17
|
|
|
super(Maxout, self).__init__("maxout") |
18
|
|
|
self.num_pieces = num_pieces |
19
|
|
|
self.output_dim = output_dim |
20
|
|
|
self.linear_transform = linear_transform |
21
|
|
|
self.init = init |
22
|
|
|
|
23
|
|
|
|
24
|
|
|
def prepare(self): |
25
|
|
|
if self.output_dim is None: |
26
|
|
|
self.output_dim = self.input_dim // self.num_pieces |
27
|
|
|
if self.linear_transform: |
28
|
|
|
self.transformer = Dense(self.output_dim * self.num_pieces).init(self.input_dim) |
29
|
|
|
self.register(self.transformer) |
30
|
|
|
|
31
|
|
|
|
32
|
|
|
def compute_tensor(self, x): |
33
|
|
|
if self.linear_transform: |
34
|
|
|
x = self.transformer.compute_tensor(x) |
35
|
|
|
# x ~ batch, time, size / batch, size |
36
|
|
|
new_shape = [x.shape[i] for i in range(x.ndim - 1)] + [self.output_dim, self.num_pieces] |
37
|
|
|
# new_shape ~ batch, time, out_dim, pieces / batch, out_dim, pieces |
38
|
|
|
output = T.max(x.reshape(new_shape, ndim=x.ndim + 1), axis=x.ndim) |
39
|
|
|
return output |