1
|
|
|
#!/usr/bin/env python |
2
|
|
|
# -*- coding: utf-8 -*- |
3
|
|
|
|
4
|
|
|
import numpy as np |
5
|
|
|
|
6
|
|
|
from controllers import TrainingController |
7
|
|
|
from deepy.core.env import FLOATX |
8
|
|
|
from deepy.core import graph |
9
|
|
|
|
10
|
|
|
import logging as loggers |
11
|
|
|
logging = loggers.getLogger(__name__) |
12
|
|
|
|
13
|
|
|
class LearningRateAnnealer(TrainingController): |
14
|
|
|
""" |
15
|
|
|
Learning rate annealer. |
16
|
|
|
""" |
17
|
|
|
|
18
|
|
|
def __init__(self, patience=3, anneal_times=4): |
19
|
|
|
""" |
20
|
|
|
:type trainer: deepy.trainers.base.NeuralTrainer |
21
|
|
|
""" |
22
|
|
|
self._iter = 0 |
23
|
|
|
self._annealed_iter = 0 |
24
|
|
|
self._patience = patience |
25
|
|
|
self._anneal_times = anneal_times |
26
|
|
|
self._annealed_times = 0 |
27
|
|
|
self._learning_rate = 0 |
28
|
|
|
if type(self._learning_rate) == float: |
29
|
|
|
raise Exception("use shared_scalar to wrap the value in the config.") |
30
|
|
|
|
31
|
|
|
def bind(self, trainer): |
32
|
|
|
super(LearningRateAnnealer, self).bind(trainer) |
33
|
|
|
self._learning_rate = self._trainer.config.learning_rate |
34
|
|
|
self._iter = 0 |
35
|
|
|
self._annealed_iter = 0 |
36
|
|
|
|
37
|
|
|
def invoke(self): |
38
|
|
|
""" |
39
|
|
|
Run it, return whether to end training. |
40
|
|
|
""" |
41
|
|
|
self._iter += 1 |
42
|
|
|
if self._iter - max(self._trainer.best_iter, self._annealed_iter) >= self._patience: |
43
|
|
|
if self._annealed_times >= self._anneal_times: |
44
|
|
|
logging.info("ending") |
45
|
|
|
self._trainer.exit() |
46
|
|
|
else: |
47
|
|
|
self._trainer.set_params(*self._trainer.best_params) |
48
|
|
|
self._learning_rate.set_value(self._learning_rate.get_value() * 0.5) |
49
|
|
|
self._annealed_times += 1 |
50
|
|
|
self._annealed_iter = self._iter |
51
|
|
|
logging.info("annealed learning rate to %f" % self._learning_rate.get_value()) |
52
|
|
|
|
53
|
|
|
@staticmethod |
54
|
|
|
def learning_rate(value=0.01): |
55
|
|
|
""" |
56
|
|
|
Wrap learning rate. |
57
|
|
|
""" |
58
|
|
|
return graph.shared(value, name="learning_rate") |
59
|
|
|
|
60
|
|
|
|
61
|
|
|
class ScheduledLearningRateAnnealer(TrainingController): |
62
|
|
|
""" |
63
|
|
|
Anneal learning rate according to pre-scripted schedule. |
64
|
|
|
""" |
65
|
|
|
|
66
|
|
|
def __init__(self, start_halving_at=5, end_at=10, halving_interval=1, rollback=False): |
67
|
|
|
logging.info("iteration to start halving learning rate: %d" % start_halving_at) |
68
|
|
|
self.epoch_start_halving = start_halving_at |
69
|
|
|
self.end_at = end_at |
70
|
|
|
self._halving_interval = halving_interval |
71
|
|
|
self._rollback = rollback |
72
|
|
|
self._last_halving_epoch = 0 |
73
|
|
|
self._learning_rate = None |
74
|
|
|
|
75
|
|
|
def bind(self, trainer): |
76
|
|
|
super(ScheduledLearningRateAnnealer, self).bind(trainer) |
77
|
|
|
self._learning_rate = self._trainer.config.learning_rate |
78
|
|
|
self._last_halving_epoch = 0 |
79
|
|
|
|
80
|
|
|
def invoke(self): |
81
|
|
|
epoch = self._trainer.epoch() |
82
|
|
|
if epoch >= self.epoch_start_halving and epoch >= self._last_halving_epoch + self._halving_interval: |
83
|
|
|
if self._rollback: |
84
|
|
|
self._trainer.set_params(*self._trainer.best_params) |
85
|
|
|
self._learning_rate.set_value(self._learning_rate.get_value() * 0.5) |
86
|
|
|
logging.info("halving learning rate to %f" % self._learning_rate.get_value()) |
87
|
|
|
self._trainer.network.train_logger.record("set learning rate to %f" % self._learning_rate.get_value()) |
88
|
|
|
self._last_halving_epoch = epoch |
89
|
|
|
if epoch >= self.end_at: |
90
|
|
|
logging.info("ending") |
91
|
|
|
self._trainer.exit() |
92
|
|
|
|
93
|
|
|
|
94
|
|
|
class ExponentialLearningRateAnnealer(TrainingController): |
95
|
|
|
""" |
96
|
|
|
Exponentially decay learning rate after each update. |
97
|
|
|
""" |
98
|
|
|
|
99
|
|
|
def __init__(self, decay_factor=1.000004, min_lr=.000001, debug=False): |
100
|
|
|
logging.info("exponentially decay learning rate with decay factor = %f" % decay_factor) |
101
|
|
|
self.decay_factor = np.array(decay_factor, dtype=FLOATX) |
102
|
|
|
self.min_lr = np.array(min_lr, dtype=FLOATX) |
103
|
|
|
self.debug = debug |
104
|
|
|
self._learning_rate = self._trainer.config.learning_rate |
105
|
|
|
if type(self._learning_rate) == float: |
106
|
|
|
raise Exception("use shared_scalar to wrap the value in the config.") |
107
|
|
|
self._trainer.network.training_callbacks.append(self.update_callback) |
108
|
|
|
|
109
|
|
|
def update_callback(self): |
110
|
|
|
if self._learning_rate.get_value() > self.min_lr: |
111
|
|
|
self._learning_rate.set_value(self._learning_rate.get_value() / self.decay_factor) |
112
|
|
|
|
113
|
|
|
def invoke(self): |
114
|
|
|
if self.debug: |
115
|
|
|
logging.info("learning rate: %.8f" % self._learning_rate.get_value()) |
116
|
|
|
|
117
|
|
|
|
118
|
|
|
class SimpleScheduler(TrainingController): |
119
|
|
|
|
120
|
|
|
""" |
121
|
|
|
Simple scheduler with maximum patience. |
122
|
|
|
""" |
123
|
|
|
|
124
|
|
|
def __init__(self, end_at=10): |
125
|
|
|
""" |
126
|
|
|
:type trainer: deepy.trainers.base.NeuralTrainer |
127
|
|
|
""" |
128
|
|
|
self._iter = 0 |
129
|
|
|
self._patience = end_at |
130
|
|
|
|
131
|
|
|
def invoke(self): |
132
|
|
|
""" |
133
|
|
|
Run it, return whether to end training. |
134
|
|
|
""" |
135
|
|
|
self._iter += 1 |
136
|
|
|
logging.info("{} epochs left to run".format(self._patience - self._iter)) |
137
|
|
|
if self._iter >= self._patience: |
138
|
|
|
self._trainer.exit() |