1
|
|
|
#!/usr/bin/env python |
2
|
|
|
# -*- coding: utf-8 -*- |
3
|
|
|
|
4
|
|
|
import logging as loggers |
5
|
|
|
from config import GeneralConfig |
6
|
|
|
from deepy.core.env import FLOATX |
7
|
|
|
import theano |
8
|
|
|
import numpy as np |
9
|
|
|
logging = loggers.getLogger(__name__) |
10
|
|
|
|
11
|
|
|
DEFAULT_TRAINER_SETTING = { |
12
|
|
|
# Training |
13
|
|
|
"learning_rate": theano.shared(np.array(0.01, dtype=FLOATX)), |
14
|
|
|
"validation_frequency": 1, |
15
|
|
|
"test_frequency": 3, |
16
|
|
|
"monitor_frequency": 1, |
17
|
|
|
"min_improvement": 0.001, |
18
|
|
|
"max_iterations": 0, |
19
|
|
|
"patience": 6, |
20
|
|
|
"auto_save": None, |
21
|
|
|
"data_transmitter": None, # Never use this |
22
|
|
|
"record_free_params": True, |
23
|
|
|
"fixed_parameters": None, |
24
|
|
|
|
25
|
|
|
# Optimization |
26
|
|
|
"method": "ADADELTA", |
27
|
|
|
"weight_bound": None, |
28
|
|
|
"avoid_nan": False, |
29
|
|
|
"gradient_tolerance": None, |
30
|
|
|
"gradient_clipping": None, # L2 clipping value |
31
|
|
|
"avoid_compute_embed_norm": False, |
32
|
|
|
|
33
|
|
|
# Regularization |
34
|
|
|
"update_l1": 0, |
35
|
|
|
"update_l2": 0, |
36
|
|
|
"weight_l1": 0, |
37
|
|
|
"weight_l2": 0, |
38
|
|
|
"hidden_l1": 0, |
39
|
|
|
"hidden_l2": 0, |
40
|
|
|
} |
41
|
|
|
|
42
|
|
|
class TrainerConfig(GeneralConfig): |
43
|
|
|
""" |
44
|
|
|
Training configuration container. |
45
|
|
|
""" |
46
|
|
|
def __init__(self, settingMap=None): |
47
|
|
|
super(TrainerConfig, self).__init__(logger=logging) |
48
|
|
|
|
49
|
|
|
settings = DEFAULT_TRAINER_SETTING |
50
|
|
|
if isinstance(settingMap, dict): |
51
|
|
|
settings.update(settingMap) |
52
|
|
|
|
53
|
|
|
for key, value in settings.items(): |
54
|
|
|
self.attrs[key] = value |
55
|
|
|
|