| Total Complexity | 4 |
| Total Lines | 23 |
| Duplicated Lines | 0 % |
| Changes | 6 | ||
| Bugs | 0 | Features | 0 |
| 1 | import theano.tensor as T |
||
| 5 | class Concatenate(NeuralLayer): |
||
| 6 | """ |
||
| 7 | Concatenate two tensors. |
||
| 8 | They should have identical dimensions except the last one. |
||
| 9 | """ |
||
| 10 | |||
| 11 | def __init__(self, axis=-1): |
||
| 12 | """ |
||
| 13 | :type layer1: NeuralLayer |
||
| 14 | :type layer2: NeuralLayer |
||
| 15 | """ |
||
| 16 | super(Concatenate, self).__init__("concate") |
||
| 17 | self.axis = axis |
||
| 18 | |||
| 19 | def prepare(self): |
||
| 20 | self.output_dim = sum(self.input_dims) |
||
| 21 | |||
| 22 | def compute_tensor(self, *xs): |
||
| 23 | if self.axis == -1: |
||
| 24 | axis = xs[0].ndim - 1 |
||
| 25 | else: |
||
| 26 | axis = self.axis |
||
| 27 | return T.concatenate(xs, axis=axis) |