|
1
|
|
|
#!/usr/bin/env python |
|
2
|
|
|
# -*- coding: utf-8 -*- |
|
3
|
|
|
|
|
4
|
|
|
import numpy as np |
|
5
|
|
|
import theano |
|
6
|
|
|
import theano.tensor as T |
|
7
|
|
|
from deepy.layers import NeuralLayer, Softmax3D, Softmax, Dense, Chain |
|
8
|
|
|
from deepy.core import CrossEntropyCost |
|
9
|
|
|
|
|
10
|
|
|
from cost import LMCost |
|
11
|
|
|
|
|
12
|
|
|
class FullOutputLayer(NeuralLayer): |
|
13
|
|
|
|
|
14
|
|
|
def __init__(self, vocab_size): |
|
15
|
|
|
super(FullOutputLayer, self).__init__("full_output") |
|
16
|
|
|
self.vocab_size = vocab_size |
|
17
|
|
|
|
|
18
|
|
|
|
|
19
|
|
|
def prepare(self): |
|
20
|
|
|
self.core = Chain(self.input_dim).stack(Dense(self.vocab_size), |
|
21
|
|
|
Softmax3D()) |
|
22
|
|
|
self.register_inner_layers(self.core) |
|
23
|
|
|
|
|
24
|
|
|
def compute_tensor(self, x): |
|
25
|
|
|
return self.core.compute_tensor(x) |
|
26
|
|
|
|
|
27
|
|
|
class ClassOutputLayer(NeuralLayer): |
|
28
|
|
|
|
|
29
|
|
|
def __init__(self, output_size, class_size): |
|
30
|
|
|
super(ClassOutputLayer, self).__init__("class_output") |
|
31
|
|
|
self.output_size = output_size |
|
32
|
|
|
self.class_size = class_size |
|
33
|
|
|
|
|
34
|
|
|
def prepare(self): |
|
35
|
|
|
# Output layers |
|
36
|
|
|
self.output_layer = Chain(self.input_dim).stack(Dense(self.output_size * self.class_size)) |
|
37
|
|
|
self.softmax_layer = Softmax().init(input_dim=self.output_size) |
|
38
|
|
|
|
|
39
|
|
|
self.class_layer = Chain(self.input_dim).stack(Dense(self.class_size), |
|
40
|
|
|
Softmax3D()) |
|
41
|
|
|
self.register_inner_layers(self.class_layer, self.output_layer) |
|
42
|
|
|
# Target tensor |
|
43
|
|
|
self.target_tensor = T.imatrix('target') |
|
44
|
|
|
self.register_external_targets(self.target_tensor) |
|
45
|
|
|
# arange cache |
|
46
|
|
|
self.arange_cache = theano.shared(np.arange(10*64), name="arange_cache") |
|
47
|
|
|
|
|
48
|
|
|
|
|
49
|
|
|
def compute_tensor(self, x): |
|
50
|
|
|
""" |
|
51
|
|
|
:param x: (batch, time, vec) |
|
52
|
|
|
""" |
|
53
|
|
|
# Target class |
|
54
|
|
|
class_matrix = self.target_tensor // self.output_size |
|
55
|
|
|
class_vector = class_matrix.reshape((-1,)) |
|
56
|
|
|
# Target index |
|
57
|
|
|
target_matrix = self.target_tensor % self.output_size |
|
58
|
|
|
target_vector = target_matrix.reshape((-1,)) |
|
59
|
|
|
# Input matrix |
|
60
|
|
|
input_matrix = x.reshape((-1, self.input_dim)) |
|
61
|
|
|
# Output matrix |
|
62
|
|
|
output_tensor3d = self.output_layer.compute_tensor(x) |
|
63
|
|
|
output_matrix = output_tensor3d.reshape((-1, self.class_size, self.output_size)) |
|
64
|
|
|
arange_vec = self.arange_cache[:output_matrix.shape[0]] |
|
65
|
|
|
sub_output_matrix = output_matrix[arange_vec, class_vector] |
|
66
|
|
|
# Softmax |
|
67
|
|
|
softmax_output_matrix = self.softmax_layer.compute_tensor(sub_output_matrix) |
|
68
|
|
|
# Class prediction |
|
69
|
|
|
class_output_matrix = self.class_layer.compute_tensor(x) |
|
70
|
|
|
# Costs |
|
71
|
|
|
output_cost = LMCost(softmax_output_matrix, target_vector).get() |
|
72
|
|
|
class_cost = LMCost(class_output_matrix, class_matrix).get() |
|
73
|
|
|
final_cost = output_cost + class_cost |
|
74
|
|
|
|
|
75
|
|
|
return final_cost |
|
76
|
|
|
|
|
77
|
|
|
|