1
|
|
|
#!/usr/bin/env python |
2
|
|
|
# -*- coding: utf-8 -*- |
3
|
|
|
import sys |
4
|
|
|
|
5
|
|
|
import numpy as np |
6
|
|
|
from numpy import linalg as LA |
7
|
|
|
from theano import tensor as T |
8
|
|
|
import theano |
9
|
|
|
|
10
|
|
|
from deepy.utils.functions import FLOATX |
11
|
|
|
from deepy.trainers import CustomizeTrainer |
12
|
|
|
from deepy.trainers.optimize import optimize_function |
13
|
|
|
|
14
|
|
|
|
15
|
|
|
class AttentionTrainer(CustomizeTrainer): |
16
|
|
|
|
17
|
|
|
def __init__(self, network, attention_layer, config): |
18
|
|
|
""" |
19
|
|
|
Parameters: |
20
|
|
|
network - AttentionNetwork |
21
|
|
|
config - training config |
22
|
|
|
:type network: NeuralClassifier |
23
|
|
|
:type attention_layer: experiments.attention_models.baseline_model.AttentionLayer |
24
|
|
|
:type config: TrainerConfig |
25
|
|
|
""" |
26
|
|
|
super(AttentionTrainer, self).__init__(network, config) |
27
|
|
|
self.large_cov_mode = False |
28
|
|
|
self.batch_size = config.get("batch_size", 20) |
29
|
|
|
self.disable_backprop = config.get("disable_backprop", False) |
30
|
|
|
self.disable_reinforce = config.get("disable_reinforce", False) |
31
|
|
|
self.last_average_reward = 999 |
32
|
|
|
self.turn = 1 |
33
|
|
|
self.layer = attention_layer |
34
|
|
|
if self.disable_backprop: |
35
|
|
|
grads = [] |
36
|
|
|
else: |
37
|
|
|
grads = [T.grad(self.cost, p) for p in network.weights + network.biases] |
38
|
|
|
if self.disable_reinforce: |
39
|
|
|
grad_l = self.layer.W_l |
40
|
|
|
else: |
41
|
|
|
grad_l = self.layer.wl_grad |
42
|
|
|
self.batch_wl_grad = np.zeros(attention_layer.W_l.get_value().shape, dtype=FLOATX) |
43
|
|
|
self.batch_grad = [np.zeros(p.get_value().shape, dtype=FLOATX) for p in network.weights + network.biases] |
44
|
|
|
self.grad_func = theano.function(network.inputs, [self.cost, grad_l, attention_layer.positions, attention_layer.last_decision] + grads, allow_input_downcast=True) |
45
|
|
|
self.opt_interface = optimize_function(self.network.weights + self.network.biases, self.config) |
46
|
|
|
self.l_opt_interface = optimize_function([self.layer.W_l], self.config) |
47
|
|
|
# self.opt_interface = gradient_interface_future(self.network.weights + self.network.biases, config=self.config) |
48
|
|
|
# self.l_opt_interface = gradient_interface_future([self.layer.W_l], config=self.config) |
49
|
|
|
|
50
|
|
|
def update_parameters(self, update_wl): |
51
|
|
|
if not self.disable_backprop: |
52
|
|
|
grads = [self.batch_grad[i] / self.batch_size for i in range(len(self.network.weights + self.network.biases))] |
53
|
|
|
self.opt_interface(*grads) |
54
|
|
|
# REINFORCE update |
55
|
|
|
if update_wl and not self.disable_reinforce: |
56
|
|
|
if np.sum(self.batch_wl_grad) == 0: |
57
|
|
|
sys.stdout.write("[0 WLG] ") |
58
|
|
|
sys.stdout.flush() |
59
|
|
|
else: |
60
|
|
|
grad_wl = self.batch_wl_grad / self.batch_size |
61
|
|
|
self.l_opt_interface(grad_wl) |
62
|
|
|
|
63
|
|
|
def train_func(self, train_set): |
64
|
|
|
cost_sum = 0.0 |
65
|
|
|
batch_cost = 0.0 |
66
|
|
|
counter = 0 |
67
|
|
|
total = 0 |
68
|
|
|
total_reward = 0 |
69
|
|
|
batch_reward = 0 |
70
|
|
|
total_position_value = 0 |
71
|
|
|
pena_count = 0 |
72
|
|
|
for d in train_set: |
73
|
|
|
pairs = self.grad_func(*d) |
74
|
|
|
cost = pairs[0] |
75
|
|
|
if cost > 10 or np.isnan(cost): |
76
|
|
|
sys.stdout.write("X") |
77
|
|
|
sys.stdout.flush() |
78
|
|
|
continue |
79
|
|
|
batch_cost += cost |
80
|
|
|
|
81
|
|
|
wl_grad = pairs[1] |
82
|
|
|
max_position_value = np.max(np.absolute(pairs[2])) |
83
|
|
|
total_position_value += max_position_value |
84
|
|
|
last_decision = pairs[3] |
85
|
|
|
target_decision = d[1][0] |
86
|
|
|
reward = 0.005 if last_decision == target_decision else 0 |
87
|
|
|
if max_position_value > 0.8: |
88
|
|
|
reward = 0 |
89
|
|
|
total_reward += reward |
90
|
|
|
batch_reward += reward |
91
|
|
|
if self.last_average_reward == 999 and total > 2000: |
92
|
|
|
self.last_average_reward = total_reward / total |
93
|
|
|
if not self.disable_reinforce: |
94
|
|
|
self.batch_wl_grad += wl_grad * - (reward - self.last_average_reward) |
95
|
|
|
if not self.disable_backprop: |
96
|
|
|
for grad_cache, grad in zip(self.batch_grad, pairs[4:]): |
97
|
|
|
grad_cache += grad |
98
|
|
|
counter += 1 |
99
|
|
|
total += 1 |
100
|
|
|
if counter >= self.batch_size: |
101
|
|
|
if total == counter: counter -= 1 |
102
|
|
|
self.update_parameters(self.last_average_reward < 999) |
103
|
|
|
|
104
|
|
|
# Clean batch gradients |
105
|
|
|
if not self.disable_reinforce: |
106
|
|
|
self.batch_wl_grad *= 0 |
107
|
|
|
if not self.disable_backprop: |
108
|
|
|
for grad_cache in self.batch_grad: |
109
|
|
|
grad_cache *= 0 |
110
|
|
|
|
111
|
|
|
if total % 1000 == 0: |
112
|
|
|
sys.stdout.write(".") |
113
|
|
|
sys.stdout.flush() |
114
|
|
|
|
115
|
|
|
# Cov |
116
|
|
|
if not self.disable_reinforce: |
117
|
|
|
cov_changed = False |
118
|
|
|
if batch_reward / self.batch_size < 0.001: |
119
|
|
|
if not self.large_cov_mode: |
120
|
|
|
if pena_count > 20: |
121
|
|
|
self.layer.cov.set_value(self.layer.large_cov) |
122
|
|
|
print "[LCOV]", |
123
|
|
|
cov_changed = True |
124
|
|
|
else: |
125
|
|
|
pena_count += 1 |
126
|
|
|
else: |
127
|
|
|
pena_count = 0 |
128
|
|
|
else: |
129
|
|
|
if self.large_cov_mode: |
130
|
|
|
if pena_count > 20: |
131
|
|
|
self.layer.cov.set_value(self.layer.small_cov) |
132
|
|
|
print "[SCOV]", |
133
|
|
|
cov_changed = True |
134
|
|
|
else: |
135
|
|
|
pena_count += 1 |
136
|
|
|
else: |
137
|
|
|
pena_count = 0 |
138
|
|
|
if cov_changed: |
139
|
|
|
self.large_cov_mode = not self.large_cov_mode |
140
|
|
|
self.layer.cov_inv_var.set_value(np.array(LA.inv(self.layer.cov.get_value()), dtype=FLOATX)) |
141
|
|
|
self.layer.cov_det_var.set_value(LA.det(self.layer.cov.get_value())) |
142
|
|
|
|
143
|
|
|
# Clean batch cost |
144
|
|
|
counter = 0 |
145
|
|
|
cost_sum += batch_cost |
146
|
|
|
batch_cost = 0.0 |
147
|
|
|
batch_reward = 0 |
148
|
|
|
if total == 0: |
149
|
|
|
return "COST OVERFLOW" |
150
|
|
|
|
151
|
|
|
sys.stdout.write("\n") |
152
|
|
|
self.last_average_reward = (total_reward / total) |
153
|
|
|
self.turn += 1 |
154
|
|
|
return "J: %.2f, Avg R: %.4f, Avg P: %.2f" % ((cost_sum / total), self.last_average_reward, (total_position_value / total)) |
155
|
|
|
|
156
|
|
|
|