1 | <?php |
||
12 | class GradientDescendent implements AlgorithmInterface |
||
13 | { |
||
14 | const DEFAULT_LEARNING_RATE = 0.01; |
||
15 | |||
16 | const DEFAULT_CONVERGENCE_CRITERIA = 0.0000001; |
||
17 | |||
18 | const DEFAULT_DIVERGENCE_CRITERIA = 100; |
||
19 | |||
20 | /** |
||
21 | * @var HypothesisInterface |
||
22 | */ |
||
23 | protected $hypothesis; |
||
24 | |||
25 | /** |
||
26 | * @var double |
||
27 | */ |
||
28 | protected $learningRate; |
||
29 | |||
30 | /** |
||
31 | * @var double |
||
32 | */ |
||
33 | protected $convergenceCriteria; |
||
34 | |||
35 | /** |
||
36 | * @var double |
||
37 | */ |
||
38 | protected $divergenceCriteria; |
||
39 | |||
40 | /** |
||
41 | * @param HypothesisInterface $hypothesis |
||
42 | * @param double $learningRate |
||
43 | * @param double $convergenceCriteria |
||
44 | * @param double $divergenceCriteria |
||
45 | */ |
||
46 | 1 | public function __construct( |
|
57 | |||
58 | /** |
||
59 | * @param Dataset $dataset |
||
60 | * @return ValueInterface |
||
61 | * @throws DivergenceException |
||
62 | */ |
||
63 | 1 | public function train(Dataset $dataset) { |
|
91 | |||
92 | /** |
||
93 | * @param Dataset $dataset |
||
94 | * @param $coefficientVector |
||
95 | * @param $features |
||
96 | * @param $total |
||
97 | * @param $incrementVector |
||
98 | * @return array |
||
99 | */ |
||
100 | 1 | protected function doStep(Dataset $dataset, $coefficientVector, $features, $total, $incrementVector) |
|
121 | |||
122 | /** |
||
123 | * @param int $features |
||
124 | * @param ValueInterface $coefficient |
||
125 | * @param Result $result |
||
126 | * @param array $costVector |
||
127 | */ |
||
128 | 1 | protected function calculateStepCost($features, ValueInterface $coefficient, Result $result, array $costVector) |
|
149 | |||
150 | } |
||
151 |