Total Complexity | 47 |
Total Lines | 422 |
Duplicated Lines | 14.22 % |
Coverage | 68.38% |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like ImportanceWeightedClassifier often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | #!/usr/bin/env python |
||
17 | 1 | class ImportanceWeightedClassifier(object): |
|
18 | """ |
||
19 | Class of importance-weighted classifiers. |
||
20 | |||
21 | Methods contain different importance-weight estimators and different loss |
||
22 | functions. |
||
23 | |||
24 | Examples |
||
25 | -------- |
||
26 | | >>>> X = np.random.randn(10, 2) |
||
27 | | >>>> y = np.vstack((-np.ones((5,)), np.ones((5,)))) |
||
28 | | >>>> Z = np.random.randn(10, 2) |
||
29 | | >>>> clf = ImportanceWeightedClassifier() |
||
30 | | >>>> clf.fit(X, y, Z) |
||
31 | | >>>> u_pred = clf.predict(Z) |
||
32 | |||
33 | """ |
||
34 | |||
35 | 1 | View Code Duplication | def __init__(self, loss='logistic', l2=1.0, iwe='lr', smoothing=True, |
|
|||
36 | clip=-1, kernel_type='rbf', bandwidth=1): |
||
37 | """ |
||
38 | Select a particular type of importance-weighted classifier. |
||
39 | |||
40 | Parameters |
||
41 | ---------- |
||
42 | loss : str |
||
43 | loss function for weighted classifier, options: 'logistic', |
||
44 | 'quadratic', 'hinge' (def: 'logistic') |
||
45 | l2 : float |
||
46 | l2-regularization parameter value (def:0.01) |
||
47 | iwe : str |
||
48 | importance weight estimator, options: 'lr', 'nn', 'rg', 'kmm', |
||
49 | 'kde' (def: 'lr') |
||
50 | smoothing : bool |
||
51 | whether to apply Laplace smoothing to the nearest-neighbour |
||
52 | importance-weight estimator (def: True) |
||
53 | clip : float |
||
54 | maximum allowable importance-weight value; if set to -1, then the |
||
55 | weights are not clipped (def:-1) |
||
56 | kernel_type : str |
||
57 | what type of kernel to use for kernel density estimation or kernel |
||
58 | mean matching, options: 'diste', 'rbf' (def: 'rbf') |
||
59 | bandwidth : float |
||
60 | kernel bandwidth parameter value for kernel-based weight |
||
61 | estimators (def: 1) |
||
62 | |||
63 | Returns |
||
64 | ------- |
||
65 | None |
||
66 | |||
67 | """ |
||
68 | 1 | self.loss = loss |
|
69 | 1 | self.l2 = l2 |
|
70 | 1 | self.iwe = iwe |
|
71 | 1 | self.smoothing = smoothing |
|
72 | 1 | self.clip = clip |
|
73 | 1 | self.kernel_type = kernel_type |
|
74 | 1 | self.bandwidth = bandwidth |
|
75 | |||
76 | # Initialize untrained classifiers based on choice of loss function |
||
77 | 1 | if self.loss == 'logistic': |
|
78 | # Logistic regression model |
||
79 | 1 | self.clf = LogisticRegression() |
|
80 | elif self.loss == 'quadratic': |
||
81 | # Least-squares model |
||
82 | self.clf = LinearRegression() |
||
83 | elif self.loss == 'hinge': |
||
84 | # Linear support vector machine |
||
85 | self.clf = LinearSVC() |
||
86 | else: |
||
87 | # Other loss functions are not implemented |
||
88 | raise NotImplementedError('Loss function not implemented.') |
||
89 | |||
90 | # Whether model has been trained |
||
91 | 1 | self.is_trained = False |
|
92 | |||
93 | # Dimensionality of training data |
||
94 | 1 | self.train_data_dim = '' |
|
95 | |||
96 | 1 | def iwe_ratio_gaussians(self, X, Z): |
|
97 | """ |
||
98 | Estimate importance weights based on a ratio of Gaussian distributions. |
||
99 | |||
100 | Parameters |
||
101 | ---------- |
||
102 | X : array |
||
103 | source data (N samples by D features) |
||
104 | Z : array |
||
105 | target data (M samples by D features) |
||
106 | |||
107 | Returns |
||
108 | ------- |
||
109 | iw : array |
||
110 | importance weights (N samples by 1) |
||
111 | |||
112 | """ |
||
113 | # Data shapes |
||
114 | 1 | N, DX = X.shape |
|
115 | 1 | M, DZ = Z.shape |
|
116 | |||
117 | # Assert equivalent dimensionalities |
||
118 | 1 | if not DX == DZ: |
|
119 | raise ValueError('Dimensionalities of X and Z should be equal.') |
||
120 | |||
121 | # Sample means in each domain |
||
122 | 1 | mu_X = np.mean(X, axis=0) |
|
123 | 1 | mu_Z = np.mean(Z, axis=0) |
|
124 | |||
125 | # Sample covariances |
||
126 | 1 | Si_X = np.cov(X.T) |
|
127 | 1 | Si_Z = np.cov(Z.T) |
|
128 | |||
129 | # Check for positive-definiteness of covariance matrices |
||
130 | 1 | if not (is_pos_def(Si_X) or is_pos_def(Si_Z)): |
|
131 | print('Warning: covariate matrices not PSD.') |
||
132 | |||
133 | regct = -6 |
||
134 | while not (is_pos_def(Si_X) or is_pos_def(Si_Z)): |
||
135 | print('Adding regularization: ' + str(1**regct)) |
||
136 | |||
137 | # Add regularization |
||
138 | Si_X += np.eye(DX)*10.**regct |
||
139 | Si_Z += np.eye(DZ)*10.**regct |
||
140 | |||
141 | # Increment regularization counter |
||
142 | regct += 1 |
||
143 | |||
144 | # Compute probability of X under each domain |
||
145 | 1 | pT = st.multivariate_normal.pdf(X, mu_Z, Si_Z) |
|
146 | 1 | pS = st.multivariate_normal.pdf(X, mu_X, Si_X) |
|
147 | |||
148 | # Check for numerical problems |
||
149 | 1 | if np.any(np.isnan(pT)) or np.any(pT == 0): |
|
150 | raise ValueError('Source probabilities are NaN or 0.') |
||
151 | 1 | if np.any(np.isnan(pS)) or np.any(pS == 0): |
|
152 | raise ValueError('Target probabilities are NaN or 0.') |
||
153 | |||
154 | # Return the ratio of probabilities |
||
155 | 1 | return pT / pS |
|
156 | |||
157 | 1 | def iwe_kernel_densities(self, X, Z): |
|
158 | """ |
||
159 | Estimate importance weights based on kernel density estimation. |
||
160 | |||
161 | Parameters |
||
162 | ---------- |
||
163 | X : array |
||
164 | source data (N samples by D features) |
||
165 | Z : array |
||
166 | target data (M samples by D features) |
||
167 | |||
168 | Returns |
||
169 | ------- |
||
170 | array |
||
171 | importance weights (N samples by 1) |
||
172 | |||
173 | """ |
||
174 | # Data shapes |
||
175 | 1 | N, DX = X.shape |
|
176 | 1 | M, DZ = Z.shape |
|
177 | |||
178 | # Assert equivalent dimensionalities |
||
179 | 1 | if not DX == DZ: |
|
180 | raise ValueError('Dimensionalities of X and Z should be equal.') |
||
181 | |||
182 | # Compute probabilities based on source kernel densities |
||
183 | 1 | pT = st.gaussian_kde(Z.T).pdf(X.T) |
|
184 | 1 | pS = st.gaussian_kde(X.T).pdf(X.T) |
|
185 | |||
186 | # Check for numerical problems |
||
187 | 1 | if np.any(np.isnan(pT)) or np.any(pT == 0): |
|
188 | raise ValueError('Source probabilities are NaN or 0.') |
||
189 | 1 | if np.any(np.isnan(pS)) or np.any(pS == 0): |
|
190 | raise ValueError('Target probabilities are NaN or 0.') |
||
191 | |||
192 | # Return the ratio of probabilities |
||
193 | 1 | return pT / pS |
|
194 | |||
195 | 1 | def iwe_logistic_discrimination(self, X, Z): |
|
196 | """ |
||
197 | Estimate importance weights based on logistic regression. |
||
198 | |||
199 | Parameters |
||
200 | ---------- |
||
201 | X : array |
||
202 | source data (N samples by D features) |
||
203 | Z : array |
||
204 | target data (M samples by D features) |
||
205 | |||
206 | Returns |
||
207 | ------- |
||
208 | array |
||
209 | importance weights (N samples by 1) |
||
210 | |||
211 | """ |
||
212 | # Data shapes |
||
213 | 1 | N, DX = X.shape |
|
214 | 1 | M, DZ = Z.shape |
|
215 | |||
216 | # Assert equivalent dimensionalities |
||
217 | 1 | if not DX == DZ: |
|
218 | raise ValueError('Dimensionalities of X and Z should be equal.') |
||
219 | |||
220 | # Make domain-label variable |
||
221 | 1 | y = np.concatenate((np.zeros((N, 1)), |
|
222 | np.ones((M, 1))), axis=0) |
||
223 | |||
224 | # Concatenate data |
||
225 | 1 | XZ = np.concatenate((X, Z), axis=0) |
|
226 | |||
227 | # Call a logistic regressor |
||
228 | 1 | lr = LogisticRegression(C=self.l2) |
|
229 | |||
230 | # Predict probability of belonging to target using cross-validation |
||
231 | 1 | preds = cross_val_predict(lr, XZ, y[:, 0]) |
|
232 | |||
233 | # Return predictions for source samples |
||
234 | 1 | return preds[:N] |
|
235 | |||
236 | 1 | def iwe_nearest_neighbours(self, X, Z): |
|
237 | """ |
||
238 | Estimate importance weights based on nearest-neighbours. |
||
239 | |||
240 | Parameters |
||
241 | ---------- |
||
242 | X : array |
||
243 | source data (N samples by D features) |
||
244 | Z : array |
||
245 | target data (M samples by D features) |
||
246 | |||
247 | Returns |
||
248 | ------- |
||
249 | iw : array |
||
250 | importance weights (N samples by 1) |
||
251 | |||
252 | """ |
||
253 | # Data shapes |
||
254 | 1 | N, DX = X.shape |
|
255 | 1 | M, DZ = Z.shape |
|
256 | |||
257 | # Assert equivalent dimensionalities |
||
258 | 1 | if not DX == DZ: |
|
259 | raise ValueError('Dimensionalities of X and Z should be equal.') |
||
260 | |||
261 | # Compute Euclidean distance between samples |
||
262 | 1 | d = cdist(X, Z, metric='euclidean') |
|
263 | |||
264 | # Count target samples within each source Voronoi cell |
||
265 | 1 | ix = np.argmin(d, axis=1) |
|
266 | 1 | iw, _ = np.array(np.histogram(ix, np.arange(N+1))) |
|
267 | |||
268 | # Laplace smoothing |
||
269 | 1 | if self.smoothing: |
|
270 | 1 | iw = (iw + 1.) / (N + 1) |
|
271 | |||
272 | # Weight clipping |
||
273 | 1 | if self.clip > 0: |
|
274 | iw = np.minimum(self.clip, np.maximum(0, iw)) |
||
275 | |||
276 | # Return weights |
||
277 | 1 | return iw |
|
278 | |||
279 | 1 | def iwe_kernel_mean_matching(self, X, Z): |
|
280 | """ |
||
281 | Estimate importance weights based on kernel mean matching. |
||
282 | |||
283 | Parameters |
||
284 | ---------- |
||
285 | X : array |
||
286 | source data (N samples by D features) |
||
287 | Z : array |
||
288 | target data (M samples by D features) |
||
289 | |||
290 | Returns |
||
291 | ------- |
||
292 | iw : array |
||
293 | importance weights (N samples by 1) |
||
294 | |||
295 | """ |
||
296 | # Data shapes |
||
297 | 1 | N, DX = X.shape |
|
298 | 1 | M, DZ = Z.shape |
|
299 | |||
300 | # Assert equivalent dimensionalities |
||
301 | 1 | if not DX == DZ: |
|
302 | raise ValueError('Dimensionalities of X and Z should be equal.') |
||
303 | |||
304 | # Compute sample pairwise distances |
||
305 | 1 | KXX = cdist(X, X, metric='euclidean') |
|
306 | 1 | KXZ = cdist(X, Z, metric='euclidean') |
|
307 | |||
308 | # Check non-negative distances |
||
309 | 1 | if not np.all(KXX >= 0): |
|
310 | raise ValueError('Non-positive distance in source kernel.') |
||
311 | 1 | if not np.all(KXZ >= 0): |
|
312 | raise ValueError('Non-positive distance in source-target kernel.') |
||
313 | |||
314 | # Compute kernels |
||
315 | 1 | if self.kernel_type == 'rbf': |
|
316 | # Radial basis functions |
||
317 | 1 | KXX = np.exp(-KXX / (2*self.bandwidth**2)) |
|
318 | 1 | KXZ = np.exp(-KXZ / (2*self.bandwidth**2)) |
|
319 | |||
320 | # Collapse second kernel and normalize |
||
321 | 1 | KXZ = N/M * np.sum(KXZ, axis=1) |
|
322 | |||
323 | # Prepare for CVXOPT |
||
324 | 1 | Q = matrix(KXX, tc='d') |
|
325 | 1 | p = matrix(KXZ, tc='d') |
|
326 | 1 | G = matrix(np.concatenate((np.ones((1, N)), -1*np.ones((1, N)), |
|
327 | -1.*np.eye(N)), axis=0), tc='d') |
||
328 | 1 | h = matrix(np.concatenate((np.array([N/np.sqrt(N) + N], ndmin=2), |
|
329 | np.array([N/np.sqrt(N) - N], ndmin=2), |
||
330 | np.zeros((N, 1))), axis=0), tc='d') |
||
331 | |||
332 | # Call quadratic program solver |
||
333 | 1 | sol = solvers.qp(Q, p, G, h) |
|
334 | |||
335 | # Return optimal coefficients as importance weights |
||
336 | 1 | return np.array(sol['x'])[:, 0] |
|
337 | |||
338 | 1 | def fit(self, X, y, Z): |
|
339 | """ |
||
340 | Fit/train an importance-weighted classifier. |
||
341 | |||
342 | Parameters |
||
343 | ---------- |
||
344 | X : array |
||
345 | source data (N samples by D features) |
||
346 | y : array |
||
347 | source labels (N samples by 1) |
||
348 | Z : array |
||
349 | target data (M samples by D features) |
||
350 | |||
351 | Returns |
||
352 | ------- |
||
353 | None |
||
354 | |||
355 | """ |
||
356 | # Data shapes |
||
357 | 1 | N, DX = X.shape |
|
358 | 1 | M, DZ = Z.shape |
|
359 | |||
360 | # Assert equivalent dimensionalities |
||
361 | 1 | if not DX == DZ: |
|
362 | raise ValueError('Dimensionalities of X and Z should be equal.') |
||
363 | |||
364 | # Find importance-weights |
||
365 | 1 | if self.iwe == 'lr': |
|
366 | 1 | w = self.iwe_logistic_discrimination(X, Z) |
|
367 | elif self.iwe == 'rg': |
||
368 | w = self.iwe_ratio_gaussians(X, Z) |
||
369 | elif self.iwe == 'nn': |
||
370 | w = self.iwe_nearest_neighbours(X, Z) |
||
371 | elif self.iwe == 'kde': |
||
372 | w = self.iwe_kernel_densities(X, Z) |
||
373 | elif self.iwe == 'kmm': |
||
374 | w = self.iwe_kernel_mean_matching(X, Z) |
||
375 | else: |
||
376 | raise NotImplementedError('Estimator not implemented.') |
||
377 | |||
378 | # Train a weighted classifier |
||
379 | 1 | if self.loss == 'logistic': |
|
380 | # Logistic regression model with sample weights |
||
381 | 1 | self.clf.fit(X, y, w) |
|
382 | elif self.loss == 'quadratic': |
||
383 | # Least-squares model with sample weights |
||
384 | self.clf.fit(X, y, w) |
||
385 | elif self.loss == 'hinge': |
||
386 | # Linear support vector machine with sample weights |
||
387 | self.clf.fit(X, y, w) |
||
388 | else: |
||
389 | # Other loss functions are not implemented |
||
390 | raise NotImplementedError('Loss function not implemented.') |
||
391 | |||
392 | # Mark classifier as trained |
||
393 | 1 | self.is_trained = True |
|
394 | |||
395 | # Store training data dimensionality |
||
396 | 1 | self.train_data_dim = DX |
|
397 | |||
398 | 1 | def predict(self, Z): |
|
399 | """ |
||
400 | Make predictions on new dataset. |
||
401 | |||
402 | Parameters |
||
403 | ---------- |
||
404 | Z : array |
||
405 | new data set (M samples by D features) |
||
406 | |||
407 | Returns |
||
408 | ------- |
||
409 | preds : array |
||
410 | label predictions (M samples by 1) |
||
411 | |||
412 | """ |
||
413 | # Data shape |
||
414 | 1 | M, D = Z.shape |
|
415 | |||
416 | # If classifier is trained, check for same dimensionality |
||
417 | 1 | if self.is_trained: |
|
418 | 1 | if not self.train_data_dim == D: |
|
419 | raise ValueError('''Test data is of different dimensionality |
||
420 | than training data.''') |
||
421 | |||
422 | # Call scikit's predict function |
||
423 | 1 | preds = self.clf.predict(Z) |
|
424 | |||
425 | # For quadratic loss function, correct predictions |
||
426 | 1 | if self.loss == 'quadratic': |
|
427 | preds = (np.sign(preds)+1)/2. |
||
428 | |||
429 | # Return predictions array |
||
430 | 1 | return preds |
|
431 | |||
432 | 1 | def get_params(self): |
|
433 | """Get classifier parameters.""" |
||
434 | return self.clf.get_params() |
||
435 | |||
436 | 1 | def is_trained(self): |
|
437 | """Check whether classifier is trained.""" |
||
438 | return self.is_trained |
||
439 |