| Total Complexity | 47 |
| Total Lines | 422 |
| Duplicated Lines | 14.22 % |
| Coverage | 68.38% |
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like ImportanceWeightedClassifier often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | #!/usr/bin/env python |
||
| 17 | 1 | class ImportanceWeightedClassifier(object): |
|
| 18 | """ |
||
| 19 | Class of importance-weighted classifiers. |
||
| 20 | |||
| 21 | Methods contain different importance-weight estimators and different loss |
||
| 22 | functions. |
||
| 23 | |||
| 24 | Examples |
||
| 25 | -------- |
||
| 26 | | >>>> X = np.random.randn(10, 2) |
||
| 27 | | >>>> y = np.vstack((-np.ones((5,)), np.ones((5,)))) |
||
| 28 | | >>>> Z = np.random.randn(10, 2) |
||
| 29 | | >>>> clf = ImportanceWeightedClassifier() |
||
| 30 | | >>>> clf.fit(X, y, Z) |
||
| 31 | | >>>> u_pred = clf.predict(Z) |
||
| 32 | |||
| 33 | """ |
||
| 34 | |||
| 35 | 1 | View Code Duplication | def __init__(self, loss='logistic', l2=1.0, iwe='lr', smoothing=True, |
|
|
|||
| 36 | clip=-1, kernel_type='rbf', bandwidth=1): |
||
| 37 | """ |
||
| 38 | Select a particular type of importance-weighted classifier. |
||
| 39 | |||
| 40 | Parameters |
||
| 41 | ---------- |
||
| 42 | loss : str |
||
| 43 | loss function for weighted classifier, options: 'logistic', |
||
| 44 | 'quadratic', 'hinge' (def: 'logistic') |
||
| 45 | l2 : float |
||
| 46 | l2-regularization parameter value (def:0.01) |
||
| 47 | iwe : str |
||
| 48 | importance weight estimator, options: 'lr', 'nn', 'rg', 'kmm', |
||
| 49 | 'kde' (def: 'lr') |
||
| 50 | smoothing : bool |
||
| 51 | whether to apply Laplace smoothing to the nearest-neighbour |
||
| 52 | importance-weight estimator (def: True) |
||
| 53 | clip : float |
||
| 54 | maximum allowable importance-weight value; if set to -1, then the |
||
| 55 | weights are not clipped (def:-1) |
||
| 56 | kernel_type : str |
||
| 57 | what type of kernel to use for kernel density estimation or kernel |
||
| 58 | mean matching, options: 'diste', 'rbf' (def: 'rbf') |
||
| 59 | bandwidth : float |
||
| 60 | kernel bandwidth parameter value for kernel-based weight |
||
| 61 | estimators (def: 1) |
||
| 62 | |||
| 63 | Returns |
||
| 64 | ------- |
||
| 65 | None |
||
| 66 | |||
| 67 | """ |
||
| 68 | 1 | self.loss = loss |
|
| 69 | 1 | self.l2 = l2 |
|
| 70 | 1 | self.iwe = iwe |
|
| 71 | 1 | self.smoothing = smoothing |
|
| 72 | 1 | self.clip = clip |
|
| 73 | 1 | self.kernel_type = kernel_type |
|
| 74 | 1 | self.bandwidth = bandwidth |
|
| 75 | |||
| 76 | # Initialize untrained classifiers based on choice of loss function |
||
| 77 | 1 | if self.loss == 'logistic': |
|
| 78 | # Logistic regression model |
||
| 79 | 1 | self.clf = LogisticRegression() |
|
| 80 | elif self.loss == 'quadratic': |
||
| 81 | # Least-squares model |
||
| 82 | self.clf = LinearRegression() |
||
| 83 | elif self.loss == 'hinge': |
||
| 84 | # Linear support vector machine |
||
| 85 | self.clf = LinearSVC() |
||
| 86 | else: |
||
| 87 | # Other loss functions are not implemented |
||
| 88 | raise NotImplementedError('Loss function not implemented.')
|
||
| 89 | |||
| 90 | # Whether model has been trained |
||
| 91 | 1 | self.is_trained = False |
|
| 92 | |||
| 93 | # Dimensionality of training data |
||
| 94 | 1 | self.train_data_dim = '' |
|
| 95 | |||
| 96 | 1 | def iwe_ratio_gaussians(self, X, Z): |
|
| 97 | """ |
||
| 98 | Estimate importance weights based on a ratio of Gaussian distributions. |
||
| 99 | |||
| 100 | Parameters |
||
| 101 | ---------- |
||
| 102 | X : array |
||
| 103 | source data (N samples by D features) |
||
| 104 | Z : array |
||
| 105 | target data (M samples by D features) |
||
| 106 | |||
| 107 | Returns |
||
| 108 | ------- |
||
| 109 | iw : array |
||
| 110 | importance weights (N samples by 1) |
||
| 111 | |||
| 112 | """ |
||
| 113 | # Data shapes |
||
| 114 | 1 | N, DX = X.shape |
|
| 115 | 1 | M, DZ = Z.shape |
|
| 116 | |||
| 117 | # Assert equivalent dimensionalities |
||
| 118 | 1 | if not DX == DZ: |
|
| 119 | raise ValueError('Dimensionalities of X and Z should be equal.')
|
||
| 120 | |||
| 121 | # Sample means in each domain |
||
| 122 | 1 | mu_X = np.mean(X, axis=0) |
|
| 123 | 1 | mu_Z = np.mean(Z, axis=0) |
|
| 124 | |||
| 125 | # Sample covariances |
||
| 126 | 1 | Si_X = np.cov(X.T) |
|
| 127 | 1 | Si_Z = np.cov(Z.T) |
|
| 128 | |||
| 129 | # Check for positive-definiteness of covariance matrices |
||
| 130 | 1 | if not (is_pos_def(Si_X) or is_pos_def(Si_Z)): |
|
| 131 | print('Warning: covariate matrices not PSD.')
|
||
| 132 | |||
| 133 | regct = -6 |
||
| 134 | while not (is_pos_def(Si_X) or is_pos_def(Si_Z)): |
||
| 135 | print('Adding regularization: ' + str(1**regct))
|
||
| 136 | |||
| 137 | # Add regularization |
||
| 138 | Si_X += np.eye(DX)*10.**regct |
||
| 139 | Si_Z += np.eye(DZ)*10.**regct |
||
| 140 | |||
| 141 | # Increment regularization counter |
||
| 142 | regct += 1 |
||
| 143 | |||
| 144 | # Compute probability of X under each domain |
||
| 145 | 1 | pT = st.multivariate_normal.pdf(X, mu_Z, Si_Z) |
|
| 146 | 1 | pS = st.multivariate_normal.pdf(X, mu_X, Si_X) |
|
| 147 | |||
| 148 | # Check for numerical problems |
||
| 149 | 1 | if np.any(np.isnan(pT)) or np.any(pT == 0): |
|
| 150 | raise ValueError('Source probabilities are NaN or 0.')
|
||
| 151 | 1 | if np.any(np.isnan(pS)) or np.any(pS == 0): |
|
| 152 | raise ValueError('Target probabilities are NaN or 0.')
|
||
| 153 | |||
| 154 | # Return the ratio of probabilities |
||
| 155 | 1 | return pT / pS |
|
| 156 | |||
| 157 | 1 | def iwe_kernel_densities(self, X, Z): |
|
| 158 | """ |
||
| 159 | Estimate importance weights based on kernel density estimation. |
||
| 160 | |||
| 161 | Parameters |
||
| 162 | ---------- |
||
| 163 | X : array |
||
| 164 | source data (N samples by D features) |
||
| 165 | Z : array |
||
| 166 | target data (M samples by D features) |
||
| 167 | |||
| 168 | Returns |
||
| 169 | ------- |
||
| 170 | array |
||
| 171 | importance weights (N samples by 1) |
||
| 172 | |||
| 173 | """ |
||
| 174 | # Data shapes |
||
| 175 | 1 | N, DX = X.shape |
|
| 176 | 1 | M, DZ = Z.shape |
|
| 177 | |||
| 178 | # Assert equivalent dimensionalities |
||
| 179 | 1 | if not DX == DZ: |
|
| 180 | raise ValueError('Dimensionalities of X and Z should be equal.')
|
||
| 181 | |||
| 182 | # Compute probabilities based on source kernel densities |
||
| 183 | 1 | pT = st.gaussian_kde(Z.T).pdf(X.T) |
|
| 184 | 1 | pS = st.gaussian_kde(X.T).pdf(X.T) |
|
| 185 | |||
| 186 | # Check for numerical problems |
||
| 187 | 1 | if np.any(np.isnan(pT)) or np.any(pT == 0): |
|
| 188 | raise ValueError('Source probabilities are NaN or 0.')
|
||
| 189 | 1 | if np.any(np.isnan(pS)) or np.any(pS == 0): |
|
| 190 | raise ValueError('Target probabilities are NaN or 0.')
|
||
| 191 | |||
| 192 | # Return the ratio of probabilities |
||
| 193 | 1 | return pT / pS |
|
| 194 | |||
| 195 | 1 | def iwe_logistic_discrimination(self, X, Z): |
|
| 196 | """ |
||
| 197 | Estimate importance weights based on logistic regression. |
||
| 198 | |||
| 199 | Parameters |
||
| 200 | ---------- |
||
| 201 | X : array |
||
| 202 | source data (N samples by D features) |
||
| 203 | Z : array |
||
| 204 | target data (M samples by D features) |
||
| 205 | |||
| 206 | Returns |
||
| 207 | ------- |
||
| 208 | array |
||
| 209 | importance weights (N samples by 1) |
||
| 210 | |||
| 211 | """ |
||
| 212 | # Data shapes |
||
| 213 | 1 | N, DX = X.shape |
|
| 214 | 1 | M, DZ = Z.shape |
|
| 215 | |||
| 216 | # Assert equivalent dimensionalities |
||
| 217 | 1 | if not DX == DZ: |
|
| 218 | raise ValueError('Dimensionalities of X and Z should be equal.')
|
||
| 219 | |||
| 220 | # Make domain-label variable |
||
| 221 | 1 | y = np.concatenate((np.zeros((N, 1)), |
|
| 222 | np.ones((M, 1))), axis=0) |
||
| 223 | |||
| 224 | # Concatenate data |
||
| 225 | 1 | XZ = np.concatenate((X, Z), axis=0) |
|
| 226 | |||
| 227 | # Call a logistic regressor |
||
| 228 | 1 | lr = LogisticRegression(C=self.l2) |
|
| 229 | |||
| 230 | # Predict probability of belonging to target using cross-validation |
||
| 231 | 1 | preds = cross_val_predict(lr, XZ, y[:, 0]) |
|
| 232 | |||
| 233 | # Return predictions for source samples |
||
| 234 | 1 | return preds[:N] |
|
| 235 | |||
| 236 | 1 | def iwe_nearest_neighbours(self, X, Z): |
|
| 237 | """ |
||
| 238 | Estimate importance weights based on nearest-neighbours. |
||
| 239 | |||
| 240 | Parameters |
||
| 241 | ---------- |
||
| 242 | X : array |
||
| 243 | source data (N samples by D features) |
||
| 244 | Z : array |
||
| 245 | target data (M samples by D features) |
||
| 246 | |||
| 247 | Returns |
||
| 248 | ------- |
||
| 249 | iw : array |
||
| 250 | importance weights (N samples by 1) |
||
| 251 | |||
| 252 | """ |
||
| 253 | # Data shapes |
||
| 254 | 1 | N, DX = X.shape |
|
| 255 | 1 | M, DZ = Z.shape |
|
| 256 | |||
| 257 | # Assert equivalent dimensionalities |
||
| 258 | 1 | if not DX == DZ: |
|
| 259 | raise ValueError('Dimensionalities of X and Z should be equal.')
|
||
| 260 | |||
| 261 | # Compute Euclidean distance between samples |
||
| 262 | 1 | d = cdist(X, Z, metric='euclidean') |
|
| 263 | |||
| 264 | # Count target samples within each source Voronoi cell |
||
| 265 | 1 | ix = np.argmin(d, axis=1) |
|
| 266 | 1 | iw, _ = np.array(np.histogram(ix, np.arange(N+1))) |
|
| 267 | |||
| 268 | # Laplace smoothing |
||
| 269 | 1 | if self.smoothing: |
|
| 270 | 1 | iw = (iw + 1.) / (N + 1) |
|
| 271 | |||
| 272 | # Weight clipping |
||
| 273 | 1 | if self.clip > 0: |
|
| 274 | iw = np.minimum(self.clip, np.maximum(0, iw)) |
||
| 275 | |||
| 276 | # Return weights |
||
| 277 | 1 | return iw |
|
| 278 | |||
| 279 | 1 | def iwe_kernel_mean_matching(self, X, Z): |
|
| 280 | """ |
||
| 281 | Estimate importance weights based on kernel mean matching. |
||
| 282 | |||
| 283 | Parameters |
||
| 284 | ---------- |
||
| 285 | X : array |
||
| 286 | source data (N samples by D features) |
||
| 287 | Z : array |
||
| 288 | target data (M samples by D features) |
||
| 289 | |||
| 290 | Returns |
||
| 291 | ------- |
||
| 292 | iw : array |
||
| 293 | importance weights (N samples by 1) |
||
| 294 | |||
| 295 | """ |
||
| 296 | # Data shapes |
||
| 297 | 1 | N, DX = X.shape |
|
| 298 | 1 | M, DZ = Z.shape |
|
| 299 | |||
| 300 | # Assert equivalent dimensionalities |
||
| 301 | 1 | if not DX == DZ: |
|
| 302 | raise ValueError('Dimensionalities of X and Z should be equal.')
|
||
| 303 | |||
| 304 | # Compute sample pairwise distances |
||
| 305 | 1 | KXX = cdist(X, X, metric='euclidean') |
|
| 306 | 1 | KXZ = cdist(X, Z, metric='euclidean') |
|
| 307 | |||
| 308 | # Check non-negative distances |
||
| 309 | 1 | if not np.all(KXX >= 0): |
|
| 310 | raise ValueError('Non-positive distance in source kernel.')
|
||
| 311 | 1 | if not np.all(KXZ >= 0): |
|
| 312 | raise ValueError('Non-positive distance in source-target kernel.')
|
||
| 313 | |||
| 314 | # Compute kernels |
||
| 315 | 1 | if self.kernel_type == 'rbf': |
|
| 316 | # Radial basis functions |
||
| 317 | 1 | KXX = np.exp(-KXX / (2*self.bandwidth**2)) |
|
| 318 | 1 | KXZ = np.exp(-KXZ / (2*self.bandwidth**2)) |
|
| 319 | |||
| 320 | # Collapse second kernel and normalize |
||
| 321 | 1 | KXZ = N/M * np.sum(KXZ, axis=1) |
|
| 322 | |||
| 323 | # Prepare for CVXOPT |
||
| 324 | 1 | Q = matrix(KXX, tc='d') |
|
| 325 | 1 | p = matrix(KXZ, tc='d') |
|
| 326 | 1 | G = matrix(np.concatenate((np.ones((1, N)), -1*np.ones((1, N)), |
|
| 327 | -1.*np.eye(N)), axis=0), tc='d') |
||
| 328 | 1 | h = matrix(np.concatenate((np.array([N/np.sqrt(N) + N], ndmin=2), |
|
| 329 | np.array([N/np.sqrt(N) - N], ndmin=2), |
||
| 330 | np.zeros((N, 1))), axis=0), tc='d') |
||
| 331 | |||
| 332 | # Call quadratic program solver |
||
| 333 | 1 | sol = solvers.qp(Q, p, G, h) |
|
| 334 | |||
| 335 | # Return optimal coefficients as importance weights |
||
| 336 | 1 | return np.array(sol['x'])[:, 0] |
|
| 337 | |||
| 338 | 1 | def fit(self, X, y, Z): |
|
| 339 | """ |
||
| 340 | Fit/train an importance-weighted classifier. |
||
| 341 | |||
| 342 | Parameters |
||
| 343 | ---------- |
||
| 344 | X : array |
||
| 345 | source data (N samples by D features) |
||
| 346 | y : array |
||
| 347 | source labels (N samples by 1) |
||
| 348 | Z : array |
||
| 349 | target data (M samples by D features) |
||
| 350 | |||
| 351 | Returns |
||
| 352 | ------- |
||
| 353 | None |
||
| 354 | |||
| 355 | """ |
||
| 356 | # Data shapes |
||
| 357 | 1 | N, DX = X.shape |
|
| 358 | 1 | M, DZ = Z.shape |
|
| 359 | |||
| 360 | # Assert equivalent dimensionalities |
||
| 361 | 1 | if not DX == DZ: |
|
| 362 | raise ValueError('Dimensionalities of X and Z should be equal.')
|
||
| 363 | |||
| 364 | # Find importance-weights |
||
| 365 | 1 | if self.iwe == 'lr': |
|
| 366 | 1 | w = self.iwe_logistic_discrimination(X, Z) |
|
| 367 | elif self.iwe == 'rg': |
||
| 368 | w = self.iwe_ratio_gaussians(X, Z) |
||
| 369 | elif self.iwe == 'nn': |
||
| 370 | w = self.iwe_nearest_neighbours(X, Z) |
||
| 371 | elif self.iwe == 'kde': |
||
| 372 | w = self.iwe_kernel_densities(X, Z) |
||
| 373 | elif self.iwe == 'kmm': |
||
| 374 | w = self.iwe_kernel_mean_matching(X, Z) |
||
| 375 | else: |
||
| 376 | raise NotImplementedError('Estimator not implemented.')
|
||
| 377 | |||
| 378 | # Train a weighted classifier |
||
| 379 | 1 | if self.loss == 'logistic': |
|
| 380 | # Logistic regression model with sample weights |
||
| 381 | 1 | self.clf.fit(X, y, w) |
|
| 382 | elif self.loss == 'quadratic': |
||
| 383 | # Least-squares model with sample weights |
||
| 384 | self.clf.fit(X, y, w) |
||
| 385 | elif self.loss == 'hinge': |
||
| 386 | # Linear support vector machine with sample weights |
||
| 387 | self.clf.fit(X, y, w) |
||
| 388 | else: |
||
| 389 | # Other loss functions are not implemented |
||
| 390 | raise NotImplementedError('Loss function not implemented.')
|
||
| 391 | |||
| 392 | # Mark classifier as trained |
||
| 393 | 1 | self.is_trained = True |
|
| 394 | |||
| 395 | # Store training data dimensionality |
||
| 396 | 1 | self.train_data_dim = DX |
|
| 397 | |||
| 398 | 1 | def predict(self, Z): |
|
| 399 | """ |
||
| 400 | Make predictions on new dataset. |
||
| 401 | |||
| 402 | Parameters |
||
| 403 | ---------- |
||
| 404 | Z : array |
||
| 405 | new data set (M samples by D features) |
||
| 406 | |||
| 407 | Returns |
||
| 408 | ------- |
||
| 409 | preds : array |
||
| 410 | label predictions (M samples by 1) |
||
| 411 | |||
| 412 | """ |
||
| 413 | # Data shape |
||
| 414 | 1 | M, D = Z.shape |
|
| 415 | |||
| 416 | # If classifier is trained, check for same dimensionality |
||
| 417 | 1 | if self.is_trained: |
|
| 418 | 1 | if not self.train_data_dim == D: |
|
| 419 | raise ValueError('''Test data is of different dimensionality
|
||
| 420 | than training data.''') |
||
| 421 | |||
| 422 | # Call scikit's predict function |
||
| 423 | 1 | preds = self.clf.predict(Z) |
|
| 424 | |||
| 425 | # For quadratic loss function, correct predictions |
||
| 426 | 1 | if self.loss == 'quadratic': |
|
| 427 | preds = (np.sign(preds)+1)/2. |
||
| 428 | |||
| 429 | # Return predictions array |
||
| 430 | 1 | return preds |
|
| 431 | |||
| 432 | 1 | def get_params(self): |
|
| 433 | """Get classifier parameters.""" |
||
| 434 | return self.clf.get_params() |
||
| 435 | |||
| 436 | 1 | def is_trained(self): |
|
| 437 | """Check whether classifier is trained.""" |
||
| 438 | return self.is_trained |
||
| 439 |