1
|
1 |
|
import numpy as np |
2
|
1 |
|
import numpy.random as rnd |
3
|
1 |
|
from libtlda.iw import ImportanceWeightedClassifier |
4
|
|
|
|
5
|
|
|
|
6
|
1 |
|
def test_init01(): |
7
|
|
|
"""Test for object type.""" |
8
|
1 |
|
clf = ImportanceWeightedClassifier() |
9
|
1 |
|
assert type(clf) == ImportanceWeightedClassifier |
10
|
|
|
|
11
|
|
|
|
12
|
1 |
|
def test_init02(): |
13
|
|
|
"""Test for is_trained model.""" |
14
|
1 |
|
clf = ImportanceWeightedClassifier() |
15
|
1 |
|
assert not clf.is_trained |
16
|
|
|
|
17
|
|
|
|
18
|
1 |
|
def test_iwe_ratio_Gaussians(): |
19
|
|
|
"""Test for estimating ratio of Gaussians.""" |
20
|
1 |
|
X = rnd.randn(10, 2) |
21
|
1 |
|
Z = rnd.randn(10, 2) + 1 |
22
|
1 |
|
clf = ImportanceWeightedClassifier() |
23
|
1 |
|
iw = clf.iwe_ratio_gaussians(X, Z) |
24
|
1 |
|
assert np.all(iw >= 0) |
25
|
|
|
|
26
|
|
|
|
27
|
1 |
|
def test_iwe_logistic_discrimination(): |
28
|
|
|
"""Test for estimating through logistic classifier.""" |
29
|
1 |
|
X = rnd.randn(10, 2) |
30
|
1 |
|
Z = rnd.randn(10, 2) + 1 |
31
|
1 |
|
clf = ImportanceWeightedClassifier() |
32
|
1 |
|
iw = clf.iwe_logistic_discrimination(X, Z) |
33
|
1 |
|
assert np.all(iw >= 0) |
34
|
|
|
|
35
|
|
|
|
36
|
1 |
|
def test_iwe_kernel_densities(): |
37
|
|
|
"""Test for estimating through kernel density estimation.""" |
38
|
1 |
|
X = rnd.randn(10, 2) |
39
|
1 |
|
Z = rnd.randn(10, 2) + 1 |
40
|
1 |
|
clf = ImportanceWeightedClassifier() |
41
|
1 |
|
iw = clf.iwe_kernel_densities(X, Z) |
42
|
1 |
|
assert np.all(iw >= 0) |
43
|
|
|
|
44
|
|
|
|
45
|
1 |
|
def test_iwe_kernel_mean_matching(): |
46
|
|
|
"""Test for estimating through kernel mean matching.""" |
47
|
1 |
|
X = rnd.randn(10, 2) |
48
|
1 |
|
Z = rnd.randn(10, 2) + 1 |
49
|
1 |
|
clf = ImportanceWeightedClassifier() |
50
|
1 |
|
iw = clf.iwe_kernel_mean_matching(X, Z) |
51
|
1 |
|
assert np.all(iw >= 0) |
52
|
|
|
|
53
|
|
|
|
54
|
1 |
|
def test_iwe_nearest_neighbours(): |
55
|
|
|
"""Test for estimating through nearest neighbours.""" |
56
|
1 |
|
X = rnd.randn(10, 2) |
57
|
1 |
|
Z = rnd.randn(10, 2) + 1 |
58
|
1 |
|
clf = ImportanceWeightedClassifier() |
59
|
1 |
|
iw = clf.iwe_nearest_neighbours(X, Z) |
60
|
|
|
assert np.all(iw >= 0) |
61
|
|
|
|