Completed
Push — master ( f50597...748d0e )
by Wouter
06:51
created

test_iwe_nearest_neighbours()   A

Complexity

Conditions 2

Size

Total Lines 7

Duplication

Lines 0
Ratio 0 %

Code Coverage

Tests 6
CRAP Score 2

Importance

Changes 1
Bugs 0 Features 1
Metric Value
cc 2
c 1
b 0
f 1
dl 0
loc 7
ccs 6
cts 6
cp 1
crap 2
rs 9.4285
1 1
import numpy as np
2 1
import numpy.random as rnd
3 1
from libtlda.iw import ImportanceWeightedClassifier
4
5
6 1
def test_init01():
7
    """Test for object type."""
8 1
    clf = ImportanceWeightedClassifier()
9 1
    assert type(clf) == ImportanceWeightedClassifier
10
11
12 1
def test_init02():
13
    """Test for is_trained model."""
14 1
    clf = ImportanceWeightedClassifier()
15 1
    assert not clf.is_trained
16
17
18 1
def test_iwe_ratio_Gaussians():
19
    """Test for estimating ratio of Gaussians."""
20 1
    X = rnd.randn(10, 2)
21 1
    Z = rnd.randn(10, 2) + 1
22 1
    clf = ImportanceWeightedClassifier()
23 1
    iw = clf.iwe_ratio_gaussians(X, Z)
24 1
    assert np.all(iw >= 0)
25
26
27 1
def test_iwe_logistic_discrimination():
28
    """Test for estimating through logistic classifier."""
29 1
    X = rnd.randn(10, 2)
30 1
    Z = rnd.randn(10, 2) + 1
31 1
    clf = ImportanceWeightedClassifier()
32 1
    iw = clf.iwe_logistic_discrimination(X, Z)
33 1
    assert np.all(iw >= 0)
34
35
36 1
def test_iwe_kernel_densities():
37
    """Test for estimating through kernel density estimation."""
38 1
    X = rnd.randn(10, 2)
39 1
    Z = rnd.randn(10, 2) + 1
40 1
    clf = ImportanceWeightedClassifier()
41 1
    iw = clf.iwe_kernel_densities(X, Z)
42 1
    assert np.all(iw >= 0)
43
44
45 1
def test_iwe_kernel_mean_matching():
46
    """Test for estimating through kernel mean matching."""
47 1
    X = rnd.randn(10, 2)
48 1
    Z = rnd.randn(10, 2) + 1
49 1
    clf = ImportanceWeightedClassifier()
50 1
    iw = clf.iwe_kernel_mean_matching(X, Z)
51 1
    assert np.all(iw >= 0)
52
53
54 1
def test_iwe_nearest_neighbours():
55
    """Test for estimating through nearest neighbours."""
56 1
    X = rnd.randn(10, 2)
57 1
    Z = rnd.randn(10, 2) + 1
58 1
    clf = ImportanceWeightedClassifier()
59 1
    iw = clf.iwe_nearest_neighbours(X, Z)
60
    assert np.all(iw >= 0)
61