| Total Complexity | 47 |
| Total Lines | 370 |
| Duplicated Lines | 17.3 % |
| Coverage | 31.62% |
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like ImportanceWeightedClassifier often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | #!/usr/bin/env python |
||
| 17 | 1 | class ImportanceWeightedClassifier(object): |
|
| 18 | """ |
||
| 19 | Class of importance-weighted classifiers. |
||
| 20 | |||
| 21 | Methods contain different importance-weight estimators and different loss |
||
| 22 | functions. |
||
| 23 | """ |
||
| 24 | |||
| 25 | 1 | View Code Duplication | def __init__(self, loss='logistic', l2=1.0, iwe='lr', smoothing=True, |
|
|
|||
| 26 | clip=-1, kernel_type='rbf', bandwidth=1): |
||
| 27 | """ |
||
| 28 | Select a particular type of importance-weighted classifier. |
||
| 29 | |||
| 30 | Parameters |
||
| 31 | ---------- |
||
| 32 | loss : str |
||
| 33 | loss function for weighted classifier, options: 'logistic', |
||
| 34 | 'quadratic', 'hinge' (def: 'logistic') |
||
| 35 | l2 : float |
||
| 36 | l2-regularization parameter value (def:0.01) |
||
| 37 | iwe : str |
||
| 38 | importance weight estimator, options: 'lr', 'nn', 'rg', 'kmm', |
||
| 39 | 'kde' (def: 'lr') |
||
| 40 | smoothing : bool |
||
| 41 | whether to apply Laplace smoothing to the nearest-neighbour |
||
| 42 | importance-weight estimator (def: True) |
||
| 43 | clip : float |
||
| 44 | maximum allowable importance-weight value; if set to -1, then the |
||
| 45 | weights are not clipped (def:-1) |
||
| 46 | kernel_type : str |
||
| 47 | what type of kernel to use for kernel density estimation or kernel |
||
| 48 | mean matching, options: 'diste', 'rbf' (def: 'rbf') |
||
| 49 | bandwidth : float |
||
| 50 | kernel bandwidth parameter value for kernel-based weight |
||
| 51 | estimators (def: 1) |
||
| 52 | |||
| 53 | Returns |
||
| 54 | ------- |
||
| 55 | None |
||
| 56 | |||
| 57 | Examples |
||
| 58 | -------- |
||
| 59 | >>>> clf = ImportanceWeightedClassifier() |
||
| 60 | |||
| 61 | """ |
||
| 62 | 1 | self.loss = loss |
|
| 63 | 1 | self.l2 = l2 |
|
| 64 | 1 | self.iwe = iwe |
|
| 65 | 1 | self.smoothing = smoothing |
|
| 66 | 1 | self.clip = clip |
|
| 67 | 1 | self.kernel_type = kernel_type |
|
| 68 | 1 | self.bandwidth = bandwidth |
|
| 69 | |||
| 70 | # Initialize untrained classifiers based on choice of loss function |
||
| 71 | 1 | if self.loss == 'logistic': |
|
| 72 | # Logistic regression model |
||
| 73 | 1 | self.clf = LogisticRegression() |
|
| 74 | elif self.loss == 'quadratic': |
||
| 75 | # Least-squares model |
||
| 76 | self.clf = LinearRegression() |
||
| 77 | elif self.loss == 'hinge': |
||
| 78 | # Linear support vector machine |
||
| 79 | self.clf = LinearSVC() |
||
| 80 | else: |
||
| 81 | # Other loss functions are not implemented |
||
| 82 | raise NotImplementedError('Loss function not implemented.')
|
||
| 83 | |||
| 84 | # Whether model has been trained |
||
| 85 | 1 | self.is_trained = False |
|
| 86 | |||
| 87 | # Dimensionality of training data |
||
| 88 | 1 | self.train_data_dim = '' |
|
| 89 | |||
| 90 | 1 | def iwe_ratio_gaussians(self, X, Z): |
|
| 91 | """ |
||
| 92 | Estimate importance weights based on a ratio of Gaussian distributions. |
||
| 93 | |||
| 94 | Parameters |
||
| 95 | ---------- |
||
| 96 | X : array |
||
| 97 | source data (N samples by D features) |
||
| 98 | Z : array |
||
| 99 | target data (M samples by D features) |
||
| 100 | |||
| 101 | Returns |
||
| 102 | ------- |
||
| 103 | iw : array |
||
| 104 | importance weights (N samples by 1) |
||
| 105 | |||
| 106 | Examples |
||
| 107 | -------- |
||
| 108 | X = np.random.randn(10, 2) |
||
| 109 | Z = np.random.randn(10, 2) |
||
| 110 | clf = ImportanceWeightedClassifier() |
||
| 111 | iw = clf.iwe_ratio_gaussians(X, Z) |
||
| 112 | |||
| 113 | """ |
||
| 114 | # Data shapes |
||
| 115 | 1 | N, DX = X.shape |
|
| 116 | 1 | M, DZ = Z.shape |
|
| 117 | |||
| 118 | # Assert equivalent dimensionalities |
||
| 119 | 1 | if not DX == DZ: |
|
| 120 | raise ValueError('Dimensionalities of X and Z should be equal.')
|
||
| 121 | |||
| 122 | # Sample means in each domain |
||
| 123 | 1 | mu_X = np.mean(X, axis=0) |
|
| 124 | 1 | mu_Z = np.mean(Z, axis=0) |
|
| 125 | |||
| 126 | # Sample covariances |
||
| 127 | 1 | Si_X = np.cov(X.T) |
|
| 128 | 1 | Si_Z = np.cov(Z.T) |
|
| 129 | |||
| 130 | # Check for positive-definiteness of covariance matrices |
||
| 131 | 1 | if not (is_pos_def(Si_X) or is_pos_def(Si_Z)): |
|
| 132 | print('Warning: covariate matrices not PSD.')
|
||
| 133 | |||
| 134 | regct = -6 |
||
| 135 | while not (is_pos_def(Si_X) or is_pos_def(Si_Z)): |
||
| 136 | print('Adding regularization: ' + str(1**regct))
|
||
| 137 | |||
| 138 | # Add regularization |
||
| 139 | Si_X += np.eye(DX)*10.**regct |
||
| 140 | Si_Z += np.eye(DZ)*10.**regct |
||
| 141 | |||
| 142 | # Increment regularization counter |
||
| 143 | regct += 1 |
||
| 144 | |||
| 145 | # Compute probability of X under each domain |
||
| 146 | 1 | pT = st.multivariate_normal.pdf(X, mu_Z, Si_Z) |
|
| 147 | 1 | pS = st.multivariate_normal.pdf(X, mu_X, Si_X) |
|
| 148 | |||
| 149 | # Check for numerical problems |
||
| 150 | 1 | if np.any(np.isnan(pT)) or np.any(pT == 0): |
|
| 151 | raise ValueError('Source probabilities are NaN or 0.')
|
||
| 152 | 1 | if np.any(np.isnan(pS)) or np.any(pS == 0): |
|
| 153 | raise ValueError('Target probabilities are NaN or 0.')
|
||
| 154 | |||
| 155 | # Return the ratio of probabilities |
||
| 156 | 1 | return pT / pS |
|
| 157 | |||
| 158 | 1 | def iwe_kernel_densities(self, X, Z): |
|
| 159 | """ |
||
| 160 | Estimate importance weights based on kernel density estimation. |
||
| 161 | |||
| 162 | INPUT (1) array 'X': source data (N samples by D features) |
||
| 163 | (2) array 'Z': target data (M samples by D features) |
||
| 164 | OUTPUT (1) array: importance weights (N samples by 1) |
||
| 165 | """ |
||
| 166 | # Data shapes |
||
| 167 | N, DX = X.shape |
||
| 168 | M, DZ = Z.shape |
||
| 169 | |||
| 170 | # Assert equivalent dimensionalities |
||
| 171 | if not DX == DZ: |
||
| 172 | raise ValueError('Dimensionalities of X and Z should be equal.')
|
||
| 173 | |||
| 174 | # Compute probabilities based on source kernel densities |
||
| 175 | pT = st.gaussian_kde(Z.T).pdf(X.T) |
||
| 176 | pS = st.gaussian_kde(X.T).pdf(X.T) |
||
| 177 | |||
| 178 | # Check for numerical problems |
||
| 179 | if np.any(np.isnan(pT)) or np.any(pT == 0): |
||
| 180 | raise ValueError('Source probabilities are NaN or 0.')
|
||
| 181 | if np.any(np.isnan(pS)) or np.any(pS == 0): |
||
| 182 | raise ValueError('Target probabilities are NaN or 0.')
|
||
| 183 | |||
| 184 | # Return the ratio of probabilities |
||
| 185 | return pT / pS |
||
| 186 | |||
| 187 | 1 | def iwe_logistic_discrimination(self, X, Z): |
|
| 188 | """ |
||
| 189 | Estimate importance weights based on logistic regression. |
||
| 190 | |||
| 191 | INPUT (1) array 'X': source data (N samples by D features) |
||
| 192 | (2) array 'Z': target data (M samples by D features) |
||
| 193 | OUTPUT (1) array: importance weights (N samples by 1) |
||
| 194 | """ |
||
| 195 | # Data shapes |
||
| 196 | 1 | N, DX = X.shape |
|
| 197 | 1 | M, DZ = Z.shape |
|
| 198 | |||
| 199 | # Assert equivalent dimensionalities |
||
| 200 | 1 | if not DX == DZ: |
|
| 201 | raise ValueError('Dimensionalities of X and Z should be equal.')
|
||
| 202 | |||
| 203 | # Make domain-label variable |
||
| 204 | 1 | y = np.concatenate((np.zeros((N, 1)), |
|
| 205 | np.ones((M, 1))), axis=0) |
||
| 206 | |||
| 207 | # Concatenate data |
||
| 208 | 1 | XZ = np.concatenate((X, Z), axis=0) |
|
| 209 | |||
| 210 | # Call a logistic regressor |
||
| 211 | 1 | lr = LogisticRegression(C=self.l2) |
|
| 212 | |||
| 213 | # Predict probability of belonging to target using cross-validation |
||
| 214 | 1 | preds = cross_val_predict(lr, XZ, y[:, 0]) |
|
| 215 | |||
| 216 | # Return predictions for source samples |
||
| 217 | 1 | return preds[:N] |
|
| 218 | |||
| 219 | 1 | def iwe_nearest_neighbours(self, X, Z): |
|
| 220 | """ |
||
| 221 | Estimate importance weights based on nearest-neighbours. |
||
| 222 | |||
| 223 | INPUT (1) array 'X': source data (N samples by D features) |
||
| 224 | (2) array 'Z': target data (M samples by D features) |
||
| 225 | OUTPUT (1) array: importance weights (N samples by 1) |
||
| 226 | """ |
||
| 227 | # Data shapes |
||
| 228 | N, DX = X.shape |
||
| 229 | M, DZ = Z.shape |
||
| 230 | |||
| 231 | # Assert equivalent dimensionalities |
||
| 232 | if not DX == DZ: |
||
| 233 | raise ValueError('Dimensionalities of X and Z should be equal.')
|
||
| 234 | |||
| 235 | # Compute Euclidean distance between samples |
||
| 236 | d = cdist(X, Z, metric='euclidean') |
||
| 237 | |||
| 238 | # Count target samples within each source Voronoi cell |
||
| 239 | ix = np.argmin(d, axis=1) |
||
| 240 | iw, _ = np.array(np.histogram(ix, np.arange(N+1))) |
||
| 241 | |||
| 242 | # Laplace smoothing |
||
| 243 | if self.smoothing: |
||
| 244 | iw = (iw + 1.) / (N + 1) |
||
| 245 | |||
| 246 | # Weight clipping |
||
| 247 | if self.clip > 0: |
||
| 248 | iw = np.minimum(self.clip, np.maximum(0, iw)) |
||
| 249 | |||
| 250 | # Return weights |
||
| 251 | return iw |
||
| 252 | |||
| 253 | 1 | def iwe_kernel_mean_matching(self, X, Z): |
|
| 254 | """ |
||
| 255 | Estimate importance weights based on kernel mean matching. |
||
| 256 | |||
| 257 | INPUT (1) array 'X': source data (N samples by D features) |
||
| 258 | (2) array 'Z': target data (M samples by D features) |
||
| 259 | OUTPUT (1) array: importance weights (N samples by 1) |
||
| 260 | """ |
||
| 261 | # Data shapes |
||
| 262 | N, DX = X.shape |
||
| 263 | M, DZ = Z.shape |
||
| 264 | |||
| 265 | # Assert equivalent dimensionalities |
||
| 266 | if not DX == DZ: |
||
| 267 | raise ValueError('Dimensionalities of X and Z should be equal.')
|
||
| 268 | |||
| 269 | # Compute sample pairwise distances |
||
| 270 | KXX = cdist(X, X, metric='euclidean') |
||
| 271 | KXZ = cdist(X, Z, metric='euclidean') |
||
| 272 | |||
| 273 | # Check non-negative distances |
||
| 274 | if not np.all(KXX >= 0): |
||
| 275 | raise ValueError('Non-positive distance in source kernel.')
|
||
| 276 | if not np.all(KXZ >= 0): |
||
| 277 | raise ValueError('Non-positive distance in source-target kernel.')
|
||
| 278 | |||
| 279 | # Compute kernels |
||
| 280 | if self.kernel_type == 'rbf': |
||
| 281 | # Radial basis functions |
||
| 282 | KXX = np.exp(-KXX / (2*self.bandwidth**2)) |
||
| 283 | KXZ = np.exp(-KXZ / (2*self.bandwidth**2)) |
||
| 284 | |||
| 285 | # Collapse second kernel and normalize |
||
| 286 | KXZ = N/M * np.sum(KXZ, axis=1) |
||
| 287 | |||
| 288 | # Prepare for CVXOPT |
||
| 289 | Q = matrix(KXX, tc='d') |
||
| 290 | p = matrix(KXZ, tc='d') |
||
| 291 | G = matrix(np.concatenate((np.ones((1, N)), -1*np.ones((1, N)), |
||
| 292 | -1.*np.eye(N)), axis=0), tc='d') |
||
| 293 | h = matrix(np.concatenate((np.array([N/np.sqrt(N) + N], ndmin=2), |
||
| 294 | np.array([N/np.sqrt(N) - N], ndmin=2), |
||
| 295 | np.zeros((N, 1))), axis=0), tc='d') |
||
| 296 | |||
| 297 | # Call quadratic program solver |
||
| 298 | sol = solvers.qp(Q, p, G, h) |
||
| 299 | |||
| 300 | # Return optimal coefficients as importance weights |
||
| 301 | return np.array(sol['x'])[:, 0] |
||
| 302 | |||
| 303 | 1 | def fit(self, X, y, Z): |
|
| 304 | """ |
||
| 305 | Fit/train an importance-weighted classifier. |
||
| 306 | |||
| 307 | INPUT (1) array 'X': source data (N samples by D features) |
||
| 308 | (2) array 'y': source labels (N samples by 1) |
||
| 309 | (3) array 'Z': target data (M samples by D features) |
||
| 310 | OUTPUT None |
||
| 311 | """ |
||
| 312 | # Data shapes |
||
| 313 | N, DX = X.shape |
||
| 314 | M, DZ = Z.shape |
||
| 315 | |||
| 316 | # Assert equivalent dimensionalities |
||
| 317 | if not DX == DZ: |
||
| 318 | raise ValueError('Dimensionalities of X and Z should be equal.')
|
||
| 319 | |||
| 320 | # Find importance-weights |
||
| 321 | if self.iwe == 'lr': |
||
| 322 | w = self.iwe_logistic_discrimination(X, Z) |
||
| 323 | elif self.iwe == 'rg': |
||
| 324 | w = self.iwe_ratio_gaussians(X, Z) |
||
| 325 | elif self.iwe == 'nn': |
||
| 326 | w = self.iwe_nearest_neighbours(X, Z) |
||
| 327 | elif self.iwe == 'kde': |
||
| 328 | w = self.iwe_kernel_densities(X, Z) |
||
| 329 | elif self.iwe == 'kmm': |
||
| 330 | w = self.iwe_kernel_mean_matching(X, Z) |
||
| 331 | else: |
||
| 332 | raise NotImplementedError('Estimator not implemented.')
|
||
| 333 | |||
| 334 | # Train a weighted classifier |
||
| 335 | if self.loss == 'logistic': |
||
| 336 | # Logistic regression model with sample weights |
||
| 337 | self.clf.fit(X, y, w) |
||
| 338 | elif self.loss == 'quadratic': |
||
| 339 | # Least-squares model with sample weights |
||
| 340 | self.clf.fit(X, y, w) |
||
| 341 | elif self.loss == 'hinge': |
||
| 342 | # Linear support vector machine with sample weights |
||
| 343 | self.clf.fit(X, y, w) |
||
| 344 | else: |
||
| 345 | # Other loss functions are not implemented |
||
| 346 | raise NotImplementedError('Loss function not implemented.')
|
||
| 347 | |||
| 348 | # Mark classifier as trained |
||
| 349 | self.is_trained = True |
||
| 350 | |||
| 351 | # Store training data dimensionality |
||
| 352 | self.train_data_dim = DX |
||
| 353 | |||
| 354 | 1 | def predict(self, Z_): |
|
| 355 | """ |
||
| 356 | Make predictions on new dataset. |
||
| 357 | |||
| 358 | INPUT (1) array 'Z_': new data set (M samples by D features) |
||
| 359 | OUTPUT (2) array 'preds': label predictions (M samples by 1) |
||
| 360 | """ |
||
| 361 | # Data shape |
||
| 362 | M, D = Z_.shape |
||
| 363 | |||
| 364 | # If classifier is trained, check for same dimensionality |
||
| 365 | if self.is_trained: |
||
| 366 | if not self.train_data_dim == D: |
||
| 367 | raise ValueError('''Test data is of different dimensionality
|
||
| 368 | than training data.''') |
||
| 369 | |||
| 370 | # Call scikit's predict function |
||
| 371 | preds = self.clf.predict(Z_) |
||
| 372 | |||
| 373 | # For quadratic loss function, correct predictions |
||
| 374 | if self.loss == 'quadratic': |
||
| 375 | preds = (np.sign(preds)+1)/2. |
||
| 376 | |||
| 377 | # Return predictions array |
||
| 378 | return preds |
||
| 379 | |||
| 380 | 1 | def get_params(self): |
|
| 381 | """Get classifier parameters.""" |
||
| 382 | return self.clf.get_params() |
||
| 383 | |||
| 384 | 1 | def is_trained(self): |
|
| 385 | """Check whether classifier is trained.""" |
||
| 386 | return self.is_trained |
||
| 387 |