1
|
|
|
from app import db |
2
|
|
|
from .models import Schedule, Skip |
3
|
|
|
from datetime import datetime, date |
4
|
|
|
import pandas as pd |
5
|
|
|
import json |
6
|
|
|
import plotly |
7
|
|
|
import plotly.express as px |
8
|
|
|
import os |
9
|
|
|
from dateutil.relativedelta import relativedelta |
10
|
|
|
from natsort import index_natsorted |
11
|
|
|
import numpy as np |
12
|
|
|
import decimal |
13
|
|
|
import plotly.graph_objs as go |
14
|
|
|
|
15
|
|
|
|
16
|
|
|
def update_cash(balance): |
17
|
|
|
# calculate total events for the year amount |
18
|
|
|
total = calc_schedule() |
19
|
|
|
|
20
|
|
|
# calculate sum of running transactions |
21
|
|
|
trans, run = calc_transactions(balance, total) |
22
|
|
|
|
23
|
|
|
return trans, run |
24
|
|
|
|
25
|
|
|
|
26
|
|
|
def calc_schedule(): |
27
|
|
|
months = 13 |
28
|
|
|
weeks = 53 |
29
|
|
|
years = 1 |
30
|
|
|
quarters = 4 |
31
|
|
|
biweeks = 27 |
32
|
|
|
|
33
|
|
|
try: |
34
|
|
|
engine = db.create_engine(os.environ.get('DATABASE_URL')).connect() |
35
|
|
|
except: |
36
|
|
|
engine = db.create_engine('sqlite:///db.sqlite').connect() |
37
|
|
|
|
38
|
|
|
# pull the schedule information |
39
|
|
|
df = pd.read_sql('SELECT * FROM schedule;', engine) |
40
|
|
|
total = pd.DataFrame(columns=['type', 'name', 'amount', 'date']) |
41
|
|
|
|
42
|
|
|
# loop through the schedule and create transactions in a table out to the future number of years |
43
|
|
|
todaydate = datetime.today().date() |
44
|
|
|
for i in range(len(df.index)): |
45
|
|
|
format = '%Y-%m-%d' |
46
|
|
|
name = df['name'][i] |
47
|
|
|
startdate = df['startdate'][i] |
48
|
|
|
firstdate = df['firstdate'][i] |
49
|
|
|
frequency = df['frequency'][i] |
50
|
|
|
amount = df['amount'][i] |
51
|
|
|
type = df['type'][i] |
52
|
|
|
existing = Schedule.query.filter_by(name=name).first() |
53
|
|
|
if not firstdate: |
54
|
|
|
existing.firstdate = datetime.strptime(startdate, format).date() |
55
|
|
|
firstdate = existing.firstdate.strftime(format) |
56
|
|
|
db.session.commit() |
57
|
|
|
if frequency == 'Monthly': |
58
|
|
|
for k in range(months): |
59
|
|
|
futuredate = datetime.strptime(startdate, format).date() + relativedelta(months=k) |
60
|
|
|
futuredateday = futuredate.day |
61
|
|
|
firstdateday = datetime.strptime(firstdate, format).date().day |
62
|
|
|
if firstdateday > futuredateday: |
63
|
|
|
try: |
64
|
|
|
for m in range(3): |
65
|
|
|
futuredateday += 1 |
66
|
|
|
if firstdateday >= futuredateday: |
67
|
|
|
futuredate = futuredate.replace(day=futuredateday) |
68
|
|
|
except ValueError: |
69
|
|
|
pass |
70
|
|
View Code Duplication |
if futuredate <= todaydate and datetime.today().weekday() < 5: |
|
|
|
|
71
|
|
|
existing.startdate = futuredate + relativedelta(months=1) |
72
|
|
|
daycheckdate = futuredate + relativedelta(months=1) |
73
|
|
|
daycheck = daycheckdate.day |
74
|
|
|
if firstdateday > daycheck: |
75
|
|
|
try: |
76
|
|
|
for m in range(3): |
77
|
|
|
daycheck += 1 |
78
|
|
|
if firstdateday >= daycheck: |
79
|
|
|
existing.startdate = daycheckdate.replace(day=daycheck) |
80
|
|
|
except ValueError: |
81
|
|
|
pass |
82
|
|
|
if type == 'Income': |
83
|
|
|
rollbackdate = datetime.combine(futuredate, datetime.min.time()) |
84
|
|
|
|
85
|
|
|
# Create a new row |
86
|
|
|
new_row = { |
87
|
|
|
'type': type, |
88
|
|
|
'name': name, |
89
|
|
|
'amount': amount, |
90
|
|
|
'date': pd.tseries.offsets.BDay(1).rollback(rollbackdate).date() |
91
|
|
|
} |
92
|
|
|
# Append the row to the DataFrame |
93
|
|
|
total = pd.concat([total, pd.DataFrame([new_row])], ignore_index=True) |
94
|
|
|
else: |
95
|
|
|
# Create a new row |
96
|
|
|
new_row = { |
97
|
|
|
'type': type, |
98
|
|
|
'name': name, |
99
|
|
|
'amount': amount, |
100
|
|
|
'date': (futuredate - pd.tseries.offsets.BDay(0)).date() |
101
|
|
|
} |
102
|
|
|
# Append the row to the DataFrame |
103
|
|
|
total = pd.concat([total, pd.DataFrame([new_row])], ignore_index=True) |
104
|
|
|
elif frequency == 'Weekly': |
105
|
|
|
for k in range(weeks): |
106
|
|
|
futuredate = datetime.strptime(startdate, format).date() + relativedelta(weeks=k) |
107
|
|
|
if futuredate <= todaydate and datetime.today().weekday() < 5: |
108
|
|
|
existing.startdate = futuredate + relativedelta(weeks=1) |
109
|
|
|
# Create a new row |
110
|
|
|
new_row = { |
111
|
|
|
'type': type, |
112
|
|
|
'name': name, |
113
|
|
|
'amount': amount, |
114
|
|
|
'date': (futuredate - pd.tseries.offsets.BDay(0)).date() |
115
|
|
|
} |
116
|
|
|
# Append the row to the DataFrame |
117
|
|
|
total = pd.concat([total, pd.DataFrame([new_row])], ignore_index=True) |
118
|
|
|
elif frequency == 'Yearly': |
119
|
|
|
for k in range(years): |
120
|
|
|
futuredate = datetime.strptime(startdate, format).date() + relativedelta(years=k) |
121
|
|
|
if futuredate <= todaydate and datetime.today().weekday() < 5: |
122
|
|
|
existing.startdate = futuredate + relativedelta(years=1) |
123
|
|
|
# Create a new row |
124
|
|
|
new_row = { |
125
|
|
|
'type': type, |
126
|
|
|
'name': name, |
127
|
|
|
'amount': amount, |
128
|
|
|
'date': (futuredate - pd.tseries.offsets.BDay(0)).date() |
129
|
|
|
} |
130
|
|
|
|
131
|
|
|
# Append the row to the DataFrame |
132
|
|
|
total = pd.concat([total, pd.DataFrame([new_row])], ignore_index=True) |
133
|
|
|
elif frequency == 'Quarterly': |
134
|
|
|
for k in range(quarters): |
135
|
|
|
futuredate = datetime.strptime(startdate, format).date() + relativedelta(months=3 * k) |
136
|
|
|
futuredateday = futuredate.day |
137
|
|
|
firstdateday = datetime.strptime(firstdate, format).date().day |
138
|
|
|
if firstdateday > futuredateday: |
139
|
|
|
try: |
140
|
|
|
for m in range(3): |
141
|
|
|
futuredateday += 1 |
142
|
|
|
if firstdateday >= futuredateday: |
143
|
|
|
futuredate = futuredate.replace(day=futuredateday) |
144
|
|
|
except ValueError: |
145
|
|
|
pass |
146
|
|
View Code Duplication |
if futuredate <= todaydate and datetime.today().weekday() < 5: |
|
|
|
|
147
|
|
|
existing.startdate = futuredate + relativedelta(months=3) |
148
|
|
|
daycheckdate = futuredate + relativedelta(months=3) |
149
|
|
|
daycheck = daycheckdate.day |
150
|
|
|
if firstdateday > daycheck: |
151
|
|
|
try: |
152
|
|
|
for m in range(3): |
153
|
|
|
daycheck += 1 |
154
|
|
|
if firstdateday >= daycheck: |
155
|
|
|
existing.startdate = daycheckdate.replace(day=daycheck) |
156
|
|
|
except ValueError: |
157
|
|
|
pass |
158
|
|
|
# Create a new row |
159
|
|
|
new_row = { |
160
|
|
|
'type': type, |
161
|
|
|
'name': name, |
162
|
|
|
'amount': amount, |
163
|
|
|
'date': (futuredate - pd.tseries.offsets.BDay(0)).date() |
164
|
|
|
} |
165
|
|
|
# Append the row to the DataFrame |
166
|
|
|
total = pd.concat([total, pd.DataFrame([new_row])], ignore_index=True) |
167
|
|
|
elif frequency == 'BiWeekly': |
168
|
|
|
for k in range(biweeks): |
169
|
|
|
futuredate = datetime.strptime(startdate, format).date() + relativedelta(weeks=2 * k) |
170
|
|
|
if futuredate <= todaydate and datetime.today().weekday() < 5: |
171
|
|
|
existing.startdate = futuredate + relativedelta(weeks=2) |
172
|
|
|
# Create a new row |
173
|
|
|
new_row = { |
174
|
|
|
'type': type, |
175
|
|
|
'name': name, |
176
|
|
|
'amount': amount, |
177
|
|
|
'date': (futuredate - pd.tseries.offsets.BDay(0)).date() |
178
|
|
|
} |
179
|
|
|
# Append the row to the DataFrame |
180
|
|
|
total = pd.concat([total, pd.DataFrame([new_row])], ignore_index=True) |
181
|
|
|
elif frequency == 'Onetime': |
182
|
|
|
futuredate = datetime.strptime(startdate, format).date() |
183
|
|
|
if futuredate < todaydate: |
184
|
|
|
db.session.delete(existing) |
185
|
|
|
else: |
186
|
|
|
# Create a new row |
187
|
|
|
new_row = { |
188
|
|
|
'type': type, |
189
|
|
|
'name': name, |
190
|
|
|
'amount': amount, |
191
|
|
|
'date': futuredate |
192
|
|
|
} |
193
|
|
|
# Append the row to the DataFrame |
194
|
|
|
total = pd.concat([total, pd.DataFrame([new_row])], ignore_index=True) |
195
|
|
|
db.session.commit() |
196
|
|
|
|
197
|
|
|
# add the hold items |
198
|
|
|
df = pd.read_sql('SELECT * FROM hold;', engine) |
199
|
|
|
for i in range(len(df.index)): |
200
|
|
|
name = df['name'][i] |
201
|
|
|
amount = df['amount'][i] |
202
|
|
|
type = df['type'][i] |
203
|
|
|
# Create a new row |
204
|
|
|
new_row = { |
205
|
|
|
'type': type, |
206
|
|
|
'name': name, |
207
|
|
|
'amount': amount, |
208
|
|
|
'date': todaydate + relativedelta(days=1) |
209
|
|
|
} |
210
|
|
|
# Append the row to the DataFrame |
211
|
|
|
total = pd.concat([total, pd.DataFrame([new_row])], ignore_index=True) |
212
|
|
|
|
213
|
|
|
# add the skip items |
214
|
|
|
df = pd.read_sql('SELECT * FROM skip;', engine) |
215
|
|
|
for i in range(len(df.index)): |
216
|
|
|
format = '%Y-%m-%d' |
217
|
|
|
name = df['name'][i] |
218
|
|
|
amount = df['amount'][i] |
219
|
|
|
type = df['type'][i] |
220
|
|
|
date = df['date'][i] |
221
|
|
|
if datetime.strptime(date, format).date() < todaydate: |
222
|
|
|
skip = Skip.query.filter_by(name=name).first() |
223
|
|
|
db.session.delete(skip) |
224
|
|
|
else: |
225
|
|
|
# Create a new row |
226
|
|
|
new_row = { |
227
|
|
|
'type': type, |
228
|
|
|
'name': name, |
229
|
|
|
'amount': amount, |
230
|
|
|
'date': datetime.strptime(date, format).date() |
231
|
|
|
} |
232
|
|
|
# Append the row to the DataFrame |
233
|
|
|
total = pd.concat([total, pd.DataFrame([new_row])], ignore_index=True) |
234
|
|
|
|
235
|
|
|
return total |
236
|
|
|
|
237
|
|
|
|
238
|
|
|
def calc_transactions(balance, total): |
239
|
|
|
# retrieve the total future transactions |
240
|
|
|
df = total.sort_values(by="date", key=lambda x: np.argsort(index_natsorted(total["date"]))) |
241
|
|
|
trans = pd.DataFrame(columns=['name', 'type', 'amount', 'date']) |
242
|
|
|
# collect the next 60 days of transactions for the transactions table |
243
|
|
|
format = '%Y-%m-%d' |
244
|
|
|
todaydate = datetime.today().date() |
245
|
|
|
todaydateplus = todaydate + relativedelta(months=2) |
246
|
|
|
for i in df.itertuples(index=False): |
247
|
|
|
if todaydateplus > \ |
248
|
|
|
i.date > todaydate and "(SKIP)" not in i.name: |
249
|
|
|
# Create a new row from i[1] |
250
|
|
|
new_row = { |
251
|
|
|
'name': i.name, # Accessing the 4th column value |
252
|
|
|
'type': i.type, |
253
|
|
|
'amount': i.amount, |
254
|
|
|
'date': i.date |
255
|
|
|
} |
256
|
|
|
# Append the row to the DataFrame |
257
|
|
|
trans = pd.concat([trans, pd.DataFrame([new_row])], ignore_index=True) |
258
|
|
|
|
259
|
|
|
# for schedules marked as expenses, make the value negative for the sum |
260
|
|
|
for i in df.itertuples(index=False): |
261
|
|
|
name = i.name |
262
|
|
|
amount = i.amount |
263
|
|
|
type = i.type |
264
|
|
|
if type == 'Expense': |
265
|
|
|
amount = float(amount) * -1 |
266
|
|
|
df.loc[df['name'] == name, 'amount'] = amount |
267
|
|
|
elif type == 'Income': |
268
|
|
|
pass |
269
|
|
|
|
270
|
|
|
# group total transactions by date and sum the amounts for each date |
271
|
|
|
df = df.groupby("date")['amount'].sum().reset_index() |
272
|
|
|
|
273
|
|
|
# loop through the total transactions by date and add the sums to the total balance amount |
274
|
|
|
runbalance = balance |
275
|
|
|
run = pd.DataFrame(columns=['amount', 'date']) |
276
|
|
|
# Create a new row |
277
|
|
|
new_row = { |
278
|
|
|
'amount': runbalance, |
279
|
|
|
'date': datetime.today().date() |
280
|
|
|
} |
281
|
|
|
# Append the row to the DataFrame |
282
|
|
|
run = pd.concat([run, pd.DataFrame([new_row])], ignore_index=True) |
283
|
|
|
for i in df.itertuples(index=False): |
284
|
|
|
rundate = i.date |
285
|
|
|
amount = i.amount |
286
|
|
|
if i.date > todaydate: |
287
|
|
|
runbalance += amount |
288
|
|
|
# Create a new row |
289
|
|
|
new_row = { |
290
|
|
|
'amount': runbalance, |
291
|
|
|
'date': rundate |
292
|
|
|
} |
293
|
|
|
# Append the row to the DataFrame |
294
|
|
|
run = pd.concat([run, pd.DataFrame([new_row])], ignore_index=True) |
295
|
|
|
|
296
|
|
|
return trans, run |
297
|
|
|
|
298
|
|
|
|
299
|
|
|
def plot_cash(run): |
300
|
|
|
# plot the running balances by date on a line plot |
301
|
|
|
df = run.sort_values(by='date', ascending=False) |
302
|
|
|
minbalance = df['amount'].min() |
303
|
|
|
minbalance = decimal.Decimal(str(minbalance)).quantize(decimal.Decimal('.01')) |
304
|
|
|
if float(minbalance) >= 0: |
305
|
|
|
minrange = 0 |
306
|
|
|
else: |
307
|
|
|
minrange = float(minbalance) * 1.1 |
308
|
|
|
maxbalance = 0 |
309
|
|
|
todaydate = datetime.today().date() |
310
|
|
|
todaydateplus = todaydate + relativedelta(months=2) |
311
|
|
|
for i in df.itertuples(index=False): |
312
|
|
|
if todaydateplus > i.date > todaydate: |
313
|
|
|
if i.amount > maxbalance: |
314
|
|
|
maxbalance = i.amount |
315
|
|
|
maxrange = maxbalance * 1.1 |
316
|
|
|
start_date = str(datetime.today().date()) |
317
|
|
|
end_date = str(datetime.today().date() + relativedelta(months=2)) |
318
|
|
|
layout = go.Layout(yaxis=dict(range=[minrange, maxrange]), xaxis=dict(range=[start_date, end_date]), |
319
|
|
|
margin=dict(l=5, r=20, t=35, b=5), dragmode='pan') |
320
|
|
|
fig = px.line(df, x="date", y="amount", template="plotly", title="Cash Flow", line_shape="spline") |
321
|
|
|
fig.update_layout(layout) |
322
|
|
|
fig.update_xaxes(title_text='Date') |
323
|
|
|
fig.update_yaxes(title_text='Amount') |
324
|
|
|
fig.update_layout(paper_bgcolor="PaleTurquoise") |
325
|
|
|
|
326
|
|
|
graphJSON = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) |
327
|
|
|
|
328
|
|
|
return minbalance, graphJSON |