| Total Complexity | 65 |
| Total Lines | 302 |
| Duplicated Lines | 7.95 % |
| Changes | 0 | ||
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like app.cashflow often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | from app import db |
||
| 2 | from .models import Schedule, Total, Running, Transactions, Skip, Balance |
||
| 3 | from datetime import datetime, date |
||
| 4 | import pandas as pd |
||
| 5 | import json |
||
| 6 | import plotly |
||
| 7 | import plotly.express as px |
||
| 8 | import os |
||
| 9 | from dateutil.relativedelta import relativedelta |
||
| 10 | from natsort import index_natsorted |
||
| 11 | import numpy as np |
||
| 12 | import decimal |
||
| 13 | import plotly.graph_objs as go |
||
| 14 | from pathlib import Path |
||
| 15 | |||
| 16 | |||
| 17 | def update_cash(balance, refresh): |
||
| 18 | # if the database has been modified, update the calculations |
||
| 19 | try: |
||
| 20 | modifiedtime = os.path.getmtime(os.environ.get('DATABASE_URL').replace('sqlite:///', '')) |
||
| 21 | modifiedtime = datetime.fromtimestamp(modifiedtime) |
||
| 22 | modpath = os.environ.get('DATABASE_URL').replace('sqlite:///', '') |
||
| 23 | modpath = modpath.replace('db.sqlite', 'modified') |
||
| 24 | os.close(os.open(modpath, os.O_CREAT)) |
||
| 25 | dbmodified = os.path.getmtime(modpath) |
||
| 26 | dbmodified = datetime.fromtimestamp(dbmodified) |
||
| 27 | except: |
||
| 28 | basedir = os.path.abspath(os.path.dirname(__file__)) |
||
| 29 | datafile = os.path.join(basedir, "data/db.sqlite") |
||
| 30 | modifiedtime = os.path.getmtime(datafile) |
||
| 31 | modifiedtime = datetime.fromtimestamp(modifiedtime) |
||
| 32 | modpath = os.path.join(basedir, "data/modified") |
||
| 33 | os.close(os.open(modpath, os.O_CREAT)) |
||
| 34 | dbmodified = os.path.getmtime(modpath) |
||
| 35 | dbmodified = datetime.fromtimestamp(dbmodified) |
||
| 36 | |||
| 37 | dt = date.today() |
||
| 38 | today = datetime.combine(dt, datetime.min.time()) |
||
| 39 | |||
| 40 | if modifiedtime > dbmodified or dbmodified < today or refresh == 1: |
||
| 41 | try: |
||
| 42 | if balance.amount: |
||
| 43 | db.session.query(Balance).delete() |
||
| 44 | balance = Balance(amount=balance.amount, date=datetime.today()) |
||
| 45 | db.session.add(balance) |
||
| 46 | db.session.commit() |
||
| 47 | except: |
||
| 48 | balance = Balance(amount='0', |
||
| 49 | date=datetime.today()) |
||
| 50 | db.session.add(balance) |
||
| 51 | db.session.commit() |
||
| 52 | |||
| 53 | # empty the tables to create fresh data from the schedule |
||
| 54 | db.session.query(Total).delete() |
||
| 55 | db.session.query(Running).delete() |
||
| 56 | db.session.query(Transactions).delete() |
||
| 57 | db.session.commit() |
||
| 58 | |||
| 59 | # calculate total events for the year amount |
||
| 60 | calc_schedule() |
||
| 61 | |||
| 62 | # calculate sum of running transactions |
||
| 63 | calc_transactions(balance) |
||
| 64 | |||
| 65 | Path(modpath).touch() |
||
| 66 | |||
| 67 | |||
| 68 | def calc_schedule(): |
||
| 69 | months = 13 |
||
| 70 | weeks = 53 |
||
| 71 | years = 1 |
||
| 72 | quarters = 4 |
||
| 73 | biweeks = 27 |
||
| 74 | |||
| 75 | try: |
||
| 76 | engine = db.create_engine(os.environ.get('DATABASE_URL')).connect() |
||
| 77 | except: |
||
| 78 | engine = db.create_engine('sqlite:///db.sqlite').connect() |
||
| 79 | |||
| 80 | # pull the schedule information |
||
| 81 | df = pd.read_sql('SELECT * FROM schedule;', engine) |
||
| 82 | |||
| 83 | # loop through the schedule and create transactions in a table out to the future number of years |
||
| 84 | todaydate = datetime.today().date() |
||
| 85 | for i in range(len(df.index)): |
||
| 86 | format = '%Y-%m-%d' |
||
| 87 | name = df['name'][i] |
||
| 88 | startdate = df['startdate'][i] |
||
| 89 | firstdate = df['firstdate'][i] |
||
| 90 | frequency = df['frequency'][i] |
||
| 91 | amount = df['amount'][i] |
||
| 92 | type = df['type'][i] |
||
| 93 | existing = Schedule.query.filter_by(name=name).first() |
||
| 94 | if not firstdate: |
||
| 95 | existing.firstdate = datetime.strptime(startdate, format).date() |
||
| 96 | firstdate = existing.firstdate.strftime(format) |
||
| 97 | db.session.commit() |
||
| 98 | if frequency == 'Monthly': |
||
| 99 | for k in range(months): |
||
| 100 | futuredate = datetime.strptime(startdate, format).date() + relativedelta(months=k) |
||
| 101 | futuredateday = futuredate.day |
||
| 102 | firstdateday = datetime.strptime(firstdate, format).date().day |
||
| 103 | if firstdateday > futuredateday: |
||
| 104 | try: |
||
| 105 | for m in range(3): |
||
| 106 | futuredateday += 1 |
||
| 107 | if firstdateday >= futuredateday: |
||
| 108 | futuredate = futuredate.replace(day=futuredateday) |
||
| 109 | except ValueError: |
||
| 110 | pass |
||
| 111 | View Code Duplication | if futuredate <= todaydate: |
|
|
|
|||
| 112 | existing.startdate = futuredate + relativedelta(months=1) |
||
| 113 | daycheckdate = futuredate + relativedelta(months=1) |
||
| 114 | daycheck = daycheckdate.day |
||
| 115 | if firstdateday > daycheck: |
||
| 116 | try: |
||
| 117 | for m in range(3): |
||
| 118 | daycheck += 1 |
||
| 119 | if firstdateday >= daycheck: |
||
| 120 | existing.startdate = daycheckdate.replace(day=daycheck) |
||
| 121 | except ValueError: |
||
| 122 | pass |
||
| 123 | if type == 'Income': |
||
| 124 | rollbackdate = datetime.combine(futuredate, datetime.min.time()) |
||
| 125 | total = Total(type=type, name=name, amount=amount, |
||
| 126 | date=pd.tseries.offsets.BDay(1).rollback(rollbackdate).date()) |
||
| 127 | else: |
||
| 128 | total = Total(type=type, name=name, amount=amount, date=futuredate - pd.tseries.offsets.BDay(0)) |
||
| 129 | db.session.add(total) |
||
| 130 | elif frequency == 'Weekly': |
||
| 131 | for k in range(weeks): |
||
| 132 | futuredate = datetime.strptime(startdate, format).date() + relativedelta(weeks=k) |
||
| 133 | if futuredate <= todaydate: |
||
| 134 | existing.startdate = futuredate + relativedelta(weeks=1) |
||
| 135 | total = Total(type=type, name=name, amount=amount, date=futuredate - pd.tseries.offsets.BDay(0)) |
||
| 136 | db.session.add(total) |
||
| 137 | elif frequency == 'Yearly': |
||
| 138 | for k in range(years): |
||
| 139 | futuredate = datetime.strptime(startdate, format).date() + relativedelta(years=k) |
||
| 140 | if futuredate <= todaydate: |
||
| 141 | existing.startdate = futuredate + relativedelta(years=1) |
||
| 142 | total = Total(type=type, name=name, amount=amount, date=futuredate - pd.tseries.offsets.BDay(0)) |
||
| 143 | db.session.add(total) |
||
| 144 | elif frequency == 'Quarterly': |
||
| 145 | for k in range(quarters): |
||
| 146 | futuredate = datetime.strptime(startdate, format).date() + relativedelta(months=3 * k) |
||
| 147 | futuredateday = futuredate.day |
||
| 148 | firstdateday = datetime.strptime(firstdate, format).date().day |
||
| 149 | if firstdateday > futuredateday: |
||
| 150 | try: |
||
| 151 | for m in range(3): |
||
| 152 | futuredateday += 1 |
||
| 153 | if firstdateday >= futuredateday: |
||
| 154 | futuredate = futuredate.replace(day=futuredateday) |
||
| 155 | except ValueError: |
||
| 156 | pass |
||
| 157 | View Code Duplication | if futuredate <= todaydate: |
|
| 158 | existing.startdate = futuredate + relativedelta(months=3) |
||
| 159 | daycheckdate = futuredate + relativedelta(months=3) |
||
| 160 | daycheck = daycheckdate.day |
||
| 161 | if firstdateday > daycheck: |
||
| 162 | try: |
||
| 163 | for m in range(3): |
||
| 164 | daycheck += 1 |
||
| 165 | if firstdateday >= daycheck: |
||
| 166 | existing.startdate = daycheckdate.replace(day=daycheck) |
||
| 167 | except ValueError: |
||
| 168 | pass |
||
| 169 | total = Total(type=type, name=name, amount=amount, date=futuredate - pd.tseries.offsets.BDay(0)) |
||
| 170 | db.session.add(total) |
||
| 171 | elif frequency == 'BiWeekly': |
||
| 172 | for k in range(biweeks): |
||
| 173 | futuredate = datetime.strptime(startdate, format).date() + relativedelta(weeks=2 * k) |
||
| 174 | if futuredate <= todaydate: |
||
| 175 | existing.startdate = futuredate + relativedelta(weeks=2) |
||
| 176 | total = Total(type=type, name=name, amount=amount, date=futuredate - pd.tseries.offsets.BDay(0)) |
||
| 177 | db.session.add(total) |
||
| 178 | elif frequency == 'Onetime': |
||
| 179 | futuredate = datetime.strptime(startdate, format).date() |
||
| 180 | if futuredate < todaydate: |
||
| 181 | db.session.delete(existing) |
||
| 182 | else: |
||
| 183 | total = Total(type=type, name=name, amount=amount, date=futuredate) |
||
| 184 | db.session.add(total) |
||
| 185 | db.session.commit() |
||
| 186 | |||
| 187 | # add the hold items |
||
| 188 | df = pd.read_sql('SELECT * FROM hold;', engine) |
||
| 189 | for i in range(len(df.index)): |
||
| 190 | name = df['name'][i] |
||
| 191 | amount = df['amount'][i] |
||
| 192 | type = df['type'][i] |
||
| 193 | total = Total(type=type, name=name, amount=amount, date=todaydate + relativedelta(days=1)) |
||
| 194 | db.session.add(total) |
||
| 195 | db.session.commit() |
||
| 196 | |||
| 197 | # add the skip items |
||
| 198 | df = pd.read_sql('SELECT * FROM skip;', engine) |
||
| 199 | for i in range(len(df.index)): |
||
| 200 | format = '%Y-%m-%d' |
||
| 201 | name = df['name'][i] |
||
| 202 | amount = df['amount'][i] |
||
| 203 | type = df['type'][i] |
||
| 204 | date = df['date'][i] |
||
| 205 | if datetime.strptime(date, format).date() < todaydate: |
||
| 206 | skip = Skip.query.filter_by(name=name).first() |
||
| 207 | db.session.delete(skip) |
||
| 208 | else: |
||
| 209 | total = Total(type=type, name=name, amount=amount, date=datetime.strptime(date, format).date()) |
||
| 210 | db.session.add(total) |
||
| 211 | db.session.commit() |
||
| 212 | |||
| 213 | |||
| 214 | def calc_transactions(balance): |
||
| 215 | try: |
||
| 216 | engine = db.create_engine(os.environ.get('DATABASE_URL')).connect() |
||
| 217 | except: |
||
| 218 | engine = db.create_engine('sqlite:///db.sqlite').connect() |
||
| 219 | |||
| 220 | # retrieve the total future transactions |
||
| 221 | df = pd.read_sql('SELECT * FROM total;', engine) |
||
| 222 | df = df.sort_values(by="date", key=lambda x: np.argsort(index_natsorted(df["date"]))) |
||
| 223 | |||
| 224 | # collect the next 60 days of transactions for the transactions table |
||
| 225 | format = '%Y-%m-%d' |
||
| 226 | todaydate = datetime.today().date() |
||
| 227 | todaydateplus = todaydate + relativedelta(months=2) |
||
| 228 | for i in df.iterrows(): |
||
| 229 | if todaydateplus > \ |
||
| 230 | datetime.strptime(i[1].date, format).date() > todaydate and "(SKIP)" not in i[1].iloc[3]: |
||
| 231 | transactions = Transactions(name=i[1].iloc[3], type=i[1].type, amount=i[1].amount, |
||
| 232 | date=datetime.strptime(i[1].date, format).date()) |
||
| 233 | db.session.add(transactions) |
||
| 234 | db.session.commit() |
||
| 235 | |||
| 236 | # for schedules marked as expenses, make the value negative for the sum |
||
| 237 | for i in df.iterrows(): |
||
| 238 | id = i[1].id |
||
| 239 | amount = i[1].amount |
||
| 240 | type = i[1].type |
||
| 241 | if type == 'Expense': |
||
| 242 | amount = float(amount) * -1 |
||
| 243 | df.at[id - 1, 'amount'] = amount |
||
| 244 | elif type == 'Income': |
||
| 245 | pass |
||
| 246 | |||
| 247 | # group total transactions by date and sum the amounts for each date |
||
| 248 | df = df.groupby("date")['amount'].sum().reset_index() |
||
| 249 | |||
| 250 | # loop through the total transactions by date and add the sums to the total balance amount |
||
| 251 | runbalance = float(balance.amount) |
||
| 252 | running = Running(amount=runbalance, date=datetime.today().date()) |
||
| 253 | db.session.add(running) |
||
| 254 | for i in df.iterrows(): |
||
| 255 | format = '%Y-%m-%d' |
||
| 256 | rundate = i[1].date |
||
| 257 | amount = i[1].amount |
||
| 258 | if datetime.strptime(rundate, format).date() > todaydate: |
||
| 259 | runbalance += amount |
||
| 260 | running = Running(amount=runbalance, date=datetime.strptime(rundate, format).date()) |
||
| 261 | db.session.add(running) |
||
| 262 | db.session.commit() |
||
| 263 | |||
| 264 | |||
| 265 | def plot_cash(): |
||
| 266 | try: |
||
| 267 | engine = db.create_engine(os.environ.get('DATABASE_URL')).connect() |
||
| 268 | except: |
||
| 269 | engine = db.create_engine('sqlite:///db.sqlite').connect() |
||
| 270 | |||
| 271 | # plot the running balances by date on a line plot |
||
| 272 | df = pd.read_sql('SELECT * FROM running;', engine) |
||
| 273 | df = df.sort_values(by='date', ascending=False) |
||
| 274 | format = '%Y-%m-%d' |
||
| 275 | minbalance = df['amount'].min() |
||
| 276 | minbalance = decimal.Decimal(str(minbalance)).quantize(decimal.Decimal('.01')) |
||
| 277 | if float(minbalance) >= 0: |
||
| 278 | minrange = 0 |
||
| 279 | else: |
||
| 280 | minrange = float(minbalance) * 1.1 |
||
| 281 | maxbalance = 0 |
||
| 282 | todaydate = datetime.today().date() |
||
| 283 | todaydateplus = todaydate + relativedelta(months=2) |
||
| 284 | for i in df.iterrows(): |
||
| 285 | if todaydateplus > datetime.strptime(i[1].date, format).date() > todaydate: |
||
| 286 | if i[1].amount > maxbalance: |
||
| 287 | maxbalance = i[1].amount |
||
| 288 | maxrange = maxbalance * 1.1 |
||
| 289 | start_date = str(datetime.today().date()) |
||
| 290 | end_date = str(datetime.today().date() + relativedelta(months=2)) |
||
| 291 | layout = go.Layout(yaxis=dict(range=[minrange, maxrange]), xaxis=dict(range=[start_date, end_date]), |
||
| 292 | margin=dict(l=5, r=20, t=35, b=5), dragmode='pan') |
||
| 293 | fig = px.line(df, x="date", y="amount", template="plotly", title="Cash Flow", line_shape="spline") |
||
| 294 | fig.update_layout(layout) |
||
| 295 | fig.update_xaxes(title_text='Date') |
||
| 296 | fig.update_yaxes(title_text='Amount') |
||
| 297 | fig.update_layout(paper_bgcolor="PaleTurquoise") |
||
| 298 | |||
| 299 | graphJSON = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) |
||
| 300 | |||
| 301 | return minbalance, graphJSON |