Total Complexity | 65 |
Total Lines | 302 |
Duplicated Lines | 7.95 % |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like app.cashflow often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | from app import db |
||
2 | from .models import Schedule, Total, Running, Transactions, Skip, Balance |
||
3 | from datetime import datetime, date |
||
4 | import pandas as pd |
||
5 | import json |
||
6 | import plotly |
||
7 | import plotly.express as px |
||
8 | import os |
||
9 | from dateutil.relativedelta import relativedelta |
||
10 | from natsort import index_natsorted |
||
11 | import numpy as np |
||
12 | import decimal |
||
13 | import plotly.graph_objs as go |
||
14 | from pathlib import Path |
||
15 | |||
16 | |||
17 | def update_cash(balance, refresh): |
||
18 | # if the database has been modified, update the calculations |
||
19 | try: |
||
20 | modifiedtime = os.path.getmtime(os.environ.get('DATABASE_URL').replace('sqlite:///', '')) |
||
21 | modifiedtime = datetime.fromtimestamp(modifiedtime) |
||
22 | modpath = os.environ.get('DATABASE_URL').replace('sqlite:///', '') |
||
23 | modpath = modpath.replace('db.sqlite', 'modified') |
||
24 | os.close(os.open(modpath, os.O_CREAT)) |
||
25 | dbmodified = os.path.getmtime(modpath) |
||
26 | dbmodified = datetime.fromtimestamp(dbmodified) |
||
27 | except: |
||
28 | basedir = os.path.abspath(os.path.dirname(__file__)) |
||
29 | datafile = os.path.join(basedir, "data/db.sqlite") |
||
30 | modifiedtime = os.path.getmtime(datafile) |
||
31 | modifiedtime = datetime.fromtimestamp(modifiedtime) |
||
32 | modpath = os.path.join(basedir, "data/modified") |
||
33 | os.close(os.open(modpath, os.O_CREAT)) |
||
34 | dbmodified = os.path.getmtime(modpath) |
||
35 | dbmodified = datetime.fromtimestamp(dbmodified) |
||
36 | |||
37 | dt = date.today() |
||
38 | today = datetime.combine(dt, datetime.min.time()) |
||
39 | |||
40 | if modifiedtime > dbmodified or dbmodified < today or refresh == 1: |
||
41 | try: |
||
42 | if balance.amount: |
||
43 | db.session.query(Balance).delete() |
||
44 | balance = Balance(amount=balance.amount, date=datetime.today()) |
||
45 | db.session.add(balance) |
||
46 | db.session.commit() |
||
47 | except: |
||
48 | balance = Balance(amount='0', |
||
49 | date=datetime.today()) |
||
50 | db.session.add(balance) |
||
51 | db.session.commit() |
||
52 | |||
53 | # empty the tables to create fresh data from the schedule |
||
54 | db.session.query(Total).delete() |
||
55 | db.session.query(Running).delete() |
||
56 | db.session.query(Transactions).delete() |
||
57 | db.session.commit() |
||
58 | |||
59 | # calculate total events for the year amount |
||
60 | calc_schedule() |
||
61 | |||
62 | # calculate sum of running transactions |
||
63 | calc_transactions(balance) |
||
64 | |||
65 | Path(modpath).touch() |
||
66 | |||
67 | |||
68 | def calc_schedule(): |
||
69 | months = 13 |
||
70 | weeks = 53 |
||
71 | years = 1 |
||
72 | quarters = 4 |
||
73 | biweeks = 27 |
||
74 | |||
75 | try: |
||
76 | engine = db.create_engine(os.environ.get('DATABASE_URL')).connect() |
||
77 | except: |
||
78 | engine = db.create_engine('sqlite:///db.sqlite').connect() |
||
79 | |||
80 | # pull the schedule information |
||
81 | df = pd.read_sql('SELECT * FROM schedule;', engine) |
||
82 | |||
83 | # loop through the schedule and create transactions in a table out to the future number of years |
||
84 | todaydate = datetime.today().date() |
||
85 | for i in range(len(df.index)): |
||
86 | format = '%Y-%m-%d' |
||
87 | name = df['name'][i] |
||
88 | startdate = df['startdate'][i] |
||
89 | firstdate = df['firstdate'][i] |
||
90 | frequency = df['frequency'][i] |
||
91 | amount = df['amount'][i] |
||
92 | type = df['type'][i] |
||
93 | existing = Schedule.query.filter_by(name=name).first() |
||
94 | if not firstdate: |
||
95 | existing.firstdate = datetime.strptime(startdate, format).date() |
||
96 | firstdate = existing.firstdate.strftime(format) |
||
97 | db.session.commit() |
||
98 | if frequency == 'Monthly': |
||
99 | for k in range(months): |
||
100 | futuredate = datetime.strptime(startdate, format).date() + relativedelta(months=k) |
||
101 | futuredateday = futuredate.day |
||
102 | firstdateday = datetime.strptime(firstdate, format).date().day |
||
103 | if firstdateday > futuredateday: |
||
104 | try: |
||
105 | for m in range(3): |
||
106 | futuredateday += 1 |
||
107 | if firstdateday >= futuredateday: |
||
108 | futuredate = futuredate.replace(day=futuredateday) |
||
109 | except ValueError: |
||
110 | pass |
||
111 | View Code Duplication | if futuredate <= todaydate: |
|
|
|||
112 | existing.startdate = futuredate + relativedelta(months=1) |
||
113 | daycheckdate = futuredate + relativedelta(months=1) |
||
114 | daycheck = daycheckdate.day |
||
115 | if firstdateday > daycheck: |
||
116 | try: |
||
117 | for m in range(3): |
||
118 | daycheck += 1 |
||
119 | if firstdateday >= daycheck: |
||
120 | existing.startdate = daycheckdate.replace(day=daycheck) |
||
121 | except ValueError: |
||
122 | pass |
||
123 | if type == 'Income': |
||
124 | rollbackdate = datetime.combine(futuredate, datetime.min.time()) |
||
125 | total = Total(type=type, name=name, amount=amount, |
||
126 | date=pd.tseries.offsets.BDay(1).rollback(rollbackdate).date()) |
||
127 | else: |
||
128 | total = Total(type=type, name=name, amount=amount, date=futuredate - pd.tseries.offsets.BDay(0)) |
||
129 | db.session.add(total) |
||
130 | elif frequency == 'Weekly': |
||
131 | for k in range(weeks): |
||
132 | futuredate = datetime.strptime(startdate, format).date() + relativedelta(weeks=k) |
||
133 | if futuredate <= todaydate: |
||
134 | existing.startdate = futuredate + relativedelta(weeks=1) |
||
135 | total = Total(type=type, name=name, amount=amount, date=futuredate - pd.tseries.offsets.BDay(0)) |
||
136 | db.session.add(total) |
||
137 | elif frequency == 'Yearly': |
||
138 | for k in range(years): |
||
139 | futuredate = datetime.strptime(startdate, format).date() + relativedelta(years=k) |
||
140 | if futuredate <= todaydate: |
||
141 | existing.startdate = futuredate + relativedelta(years=1) |
||
142 | total = Total(type=type, name=name, amount=amount, date=futuredate - pd.tseries.offsets.BDay(0)) |
||
143 | db.session.add(total) |
||
144 | elif frequency == 'Quarterly': |
||
145 | for k in range(quarters): |
||
146 | futuredate = datetime.strptime(startdate, format).date() + relativedelta(months=3 * k) |
||
147 | futuredateday = futuredate.day |
||
148 | firstdateday = datetime.strptime(firstdate, format).date().day |
||
149 | if firstdateday > futuredateday: |
||
150 | try: |
||
151 | for m in range(3): |
||
152 | futuredateday += 1 |
||
153 | if firstdateday >= futuredateday: |
||
154 | futuredate = futuredate.replace(day=futuredateday) |
||
155 | except ValueError: |
||
156 | pass |
||
157 | View Code Duplication | if futuredate <= todaydate: |
|
158 | existing.startdate = futuredate + relativedelta(months=3) |
||
159 | daycheckdate = futuredate + relativedelta(months=3) |
||
160 | daycheck = daycheckdate.day |
||
161 | if firstdateday > daycheck: |
||
162 | try: |
||
163 | for m in range(3): |
||
164 | daycheck += 1 |
||
165 | if firstdateday >= daycheck: |
||
166 | existing.startdate = daycheckdate.replace(day=daycheck) |
||
167 | except ValueError: |
||
168 | pass |
||
169 | total = Total(type=type, name=name, amount=amount, date=futuredate - pd.tseries.offsets.BDay(0)) |
||
170 | db.session.add(total) |
||
171 | elif frequency == 'BiWeekly': |
||
172 | for k in range(biweeks): |
||
173 | futuredate = datetime.strptime(startdate, format).date() + relativedelta(weeks=2 * k) |
||
174 | if futuredate <= todaydate: |
||
175 | existing.startdate = futuredate + relativedelta(weeks=2) |
||
176 | total = Total(type=type, name=name, amount=amount, date=futuredate - pd.tseries.offsets.BDay(0)) |
||
177 | db.session.add(total) |
||
178 | elif frequency == 'Onetime': |
||
179 | futuredate = datetime.strptime(startdate, format).date() |
||
180 | if futuredate < todaydate: |
||
181 | db.session.delete(existing) |
||
182 | else: |
||
183 | total = Total(type=type, name=name, amount=amount, date=futuredate) |
||
184 | db.session.add(total) |
||
185 | db.session.commit() |
||
186 | |||
187 | # add the hold items |
||
188 | df = pd.read_sql('SELECT * FROM hold;', engine) |
||
189 | for i in range(len(df.index)): |
||
190 | name = df['name'][i] |
||
191 | amount = df['amount'][i] |
||
192 | type = df['type'][i] |
||
193 | total = Total(type=type, name=name, amount=amount, date=todaydate + relativedelta(days=1)) |
||
194 | db.session.add(total) |
||
195 | db.session.commit() |
||
196 | |||
197 | # add the skip items |
||
198 | df = pd.read_sql('SELECT * FROM skip;', engine) |
||
199 | for i in range(len(df.index)): |
||
200 | format = '%Y-%m-%d' |
||
201 | name = df['name'][i] |
||
202 | amount = df['amount'][i] |
||
203 | type = df['type'][i] |
||
204 | date = df['date'][i] |
||
205 | if datetime.strptime(date, format).date() < todaydate: |
||
206 | skip = Skip.query.filter_by(name=name).first() |
||
207 | db.session.delete(skip) |
||
208 | else: |
||
209 | total = Total(type=type, name=name, amount=amount, date=datetime.strptime(date, format).date()) |
||
210 | db.session.add(total) |
||
211 | db.session.commit() |
||
212 | |||
213 | |||
214 | def calc_transactions(balance): |
||
215 | try: |
||
216 | engine = db.create_engine(os.environ.get('DATABASE_URL')).connect() |
||
217 | except: |
||
218 | engine = db.create_engine('sqlite:///db.sqlite').connect() |
||
219 | |||
220 | # retrieve the total future transactions |
||
221 | df = pd.read_sql('SELECT * FROM total;', engine) |
||
222 | df = df.sort_values(by="date", key=lambda x: np.argsort(index_natsorted(df["date"]))) |
||
223 | |||
224 | # collect the next 60 days of transactions for the transactions table |
||
225 | format = '%Y-%m-%d' |
||
226 | todaydate = datetime.today().date() |
||
227 | todaydateplus = todaydate + relativedelta(months=2) |
||
228 | for i in df.iterrows(): |
||
229 | if todaydateplus > \ |
||
230 | datetime.strptime(i[1].date, format).date() > todaydate and "(SKIP)" not in i[1].iloc[3]: |
||
231 | transactions = Transactions(name=i[1].iloc[3], type=i[1].type, amount=i[1].amount, |
||
232 | date=datetime.strptime(i[1].date, format).date()) |
||
233 | db.session.add(transactions) |
||
234 | db.session.commit() |
||
235 | |||
236 | # for schedules marked as expenses, make the value negative for the sum |
||
237 | for i in df.iterrows(): |
||
238 | id = i[1].id |
||
239 | amount = i[1].amount |
||
240 | type = i[1].type |
||
241 | if type == 'Expense': |
||
242 | amount = float(amount) * -1 |
||
243 | df.at[id - 1, 'amount'] = amount |
||
244 | elif type == 'Income': |
||
245 | pass |
||
246 | |||
247 | # group total transactions by date and sum the amounts for each date |
||
248 | df = df.groupby("date")['amount'].sum().reset_index() |
||
249 | |||
250 | # loop through the total transactions by date and add the sums to the total balance amount |
||
251 | runbalance = float(balance.amount) |
||
252 | running = Running(amount=runbalance, date=datetime.today().date()) |
||
253 | db.session.add(running) |
||
254 | for i in df.iterrows(): |
||
255 | format = '%Y-%m-%d' |
||
256 | rundate = i[1].date |
||
257 | amount = i[1].amount |
||
258 | if datetime.strptime(rundate, format).date() > todaydate: |
||
259 | runbalance += amount |
||
260 | running = Running(amount=runbalance, date=datetime.strptime(rundate, format).date()) |
||
261 | db.session.add(running) |
||
262 | db.session.commit() |
||
263 | |||
264 | |||
265 | def plot_cash(): |
||
266 | try: |
||
267 | engine = db.create_engine(os.environ.get('DATABASE_URL')).connect() |
||
268 | except: |
||
269 | engine = db.create_engine('sqlite:///db.sqlite').connect() |
||
270 | |||
271 | # plot the running balances by date on a line plot |
||
272 | df = pd.read_sql('SELECT * FROM running;', engine) |
||
273 | df = df.sort_values(by='date', ascending=False) |
||
274 | format = '%Y-%m-%d' |
||
275 | minbalance = df['amount'].min() |
||
276 | minbalance = decimal.Decimal(str(minbalance)).quantize(decimal.Decimal('.01')) |
||
277 | if float(minbalance) >= 0: |
||
278 | minrange = 0 |
||
279 | else: |
||
280 | minrange = float(minbalance) * 1.1 |
||
281 | maxbalance = 0 |
||
282 | todaydate = datetime.today().date() |
||
283 | todaydateplus = todaydate + relativedelta(months=2) |
||
284 | for i in df.iterrows(): |
||
285 | if todaydateplus > datetime.strptime(i[1].date, format).date() > todaydate: |
||
286 | if i[1].amount > maxbalance: |
||
287 | maxbalance = i[1].amount |
||
288 | maxrange = maxbalance * 1.1 |
||
289 | start_date = str(datetime.today().date()) |
||
290 | end_date = str(datetime.today().date() + relativedelta(months=2)) |
||
291 | layout = go.Layout(yaxis=dict(range=[minrange, maxrange]), xaxis=dict(range=[start_date, end_date]), |
||
292 | margin=dict(l=5, r=20, t=35, b=5), dragmode='pan') |
||
293 | fig = px.line(df, x="date", y="amount", template="plotly", title="Cash Flow", line_shape="spline") |
||
294 | fig.update_layout(layout) |
||
295 | fig.update_xaxes(title_text='Date') |
||
296 | fig.update_yaxes(title_text='Amount') |
||
297 | fig.update_layout(paper_bgcolor="PaleTurquoise") |
||
298 | |||
299 | graphJSON = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) |
||
300 | |||
301 | return minbalance, graphJSON |