Conditions | 24 |
Total Lines | 99 |
Code Lines | 87 |
Lines | 0 |
Ratio | 0 % |
Changes | 0 |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
Complex classes like app.cashflow.calc_schedule() often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | from app import db |
||
65 | def calc_schedule(): |
||
66 | months = 13 |
||
67 | weeks = 53 |
||
68 | years = 1 |
||
69 | quarters = 4 |
||
70 | biweeks = 27 |
||
71 | |||
72 | try: |
||
73 | engine = db.create_engine(os.environ.get('DATABASE_URL')).connect() |
||
74 | except: |
||
75 | engine = db.create_engine('sqlite:///db.sqlite').connect() |
||
76 | |||
77 | # pull the schedule information |
||
78 | df = pd.read_sql('SELECT * FROM schedule;', engine) |
||
79 | |||
80 | # loop through the schedule and create transactions in a table out to the future number of years |
||
81 | todaydate = datetime.today().date() |
||
82 | for i in range(len(df.index)): |
||
83 | format = '%Y-%m-%d' |
||
84 | name = df['name'][i] |
||
85 | startdate = df['startdate'][i] |
||
86 | frequency = df['frequency'][i] |
||
87 | amount = df['amount'][i] |
||
88 | type = df['type'][i] |
||
89 | existing = Schedule.query.filter_by(name=name).first() |
||
90 | if frequency == 'Monthly': |
||
91 | for k in range(months): |
||
92 | futuredate = datetime.strptime(startdate, format).date() + relativedelta(months=k) |
||
93 | if futuredate <= todaydate: |
||
94 | existing.startdate = futuredate + relativedelta(months=1) |
||
95 | if type == 'Income': |
||
96 | rollbackdate = datetime.combine(futuredate, datetime.min.time()) |
||
97 | total = Total(type=type, name=name, amount=amount, |
||
98 | date=pd.tseries.offsets.BDay(1).rollback(rollbackdate).date()) |
||
99 | else: |
||
100 | total = Total(type=type, name=name, amount=amount, date=futuredate - pd.tseries.offsets.BDay(0)) |
||
101 | db.session.add(total) |
||
102 | elif frequency == 'Weekly': |
||
103 | for k in range(weeks): |
||
104 | futuredate = datetime.strptime(startdate, format).date() + relativedelta(weeks=k) |
||
105 | if futuredate <= todaydate: |
||
106 | existing.startdate = futuredate + relativedelta(weeks=1) |
||
107 | total = Total(type=type, name=name, amount=amount, date=futuredate - pd.tseries.offsets.BDay(0)) |
||
108 | db.session.add(total) |
||
109 | elif frequency == 'Yearly': |
||
110 | for k in range(years): |
||
111 | futuredate = datetime.strptime(startdate, format).date() + relativedelta(years=k) |
||
112 | if futuredate <= todaydate: |
||
113 | existing.startdate = futuredate + relativedelta(years=1) |
||
114 | total = Total(type=type, name=name, amount=amount, date=futuredate - pd.tseries.offsets.BDay(0)) |
||
115 | db.session.add(total) |
||
116 | elif frequency == 'Quarterly': |
||
117 | for k in range(quarters): |
||
118 | futuredate = datetime.strptime(startdate, format).date() + relativedelta(months=3 * k) |
||
119 | if futuredate <= todaydate: |
||
120 | existing.startdate = futuredate + relativedelta(months=3) |
||
121 | total = Total(type=type, name=name, amount=amount, date=futuredate - pd.tseries.offsets.BDay(0)) |
||
122 | db.session.add(total) |
||
123 | elif frequency == 'BiWeekly': |
||
124 | for k in range(biweeks): |
||
125 | futuredate = datetime.strptime(startdate, format).date() + relativedelta(weeks=2 * k) |
||
126 | if futuredate <= todaydate: |
||
127 | existing.startdate = futuredate + relativedelta(weeks=2) |
||
128 | total = Total(type=type, name=name, amount=amount, date=futuredate - pd.tseries.offsets.BDay(0)) |
||
129 | db.session.add(total) |
||
130 | elif frequency == 'Onetime': |
||
131 | futuredate = datetime.strptime(startdate, format).date() |
||
132 | if futuredate < todaydate: |
||
133 | db.session.delete(existing) |
||
134 | else: |
||
135 | total = Total(type=type, name=name, amount=amount, date=futuredate) |
||
136 | db.session.add(total) |
||
137 | db.session.commit() |
||
138 | |||
139 | # add the hold items |
||
140 | df = pd.read_sql('SELECT * FROM hold;', engine) |
||
141 | for i in range(len(df.index)): |
||
142 | name = df['name'][i] |
||
143 | amount = df['amount'][i] |
||
144 | type = df['type'][i] |
||
145 | total = Total(type=type, name=name, amount=amount, date=todaydate + relativedelta(days=1)) |
||
146 | db.session.add(total) |
||
147 | db.session.commit() |
||
148 | |||
149 | # add the skip items |
||
150 | df = pd.read_sql('SELECT * FROM skip;', engine) |
||
151 | for i in range(len(df.index)): |
||
152 | format = '%Y-%m-%d' |
||
153 | name = df['name'][i] |
||
154 | amount = df['amount'][i] |
||
155 | type = df['type'][i] |
||
156 | date = df['date'][i] |
||
157 | if datetime.strptime(date, format).date() < todaydate: |
||
158 | skip = Skip.query.filter_by(name=name).first() |
||
159 | db.session.delete(skip) |
||
160 | else: |
||
161 | total = Total(type=type, name=name, amount=amount, date=datetime.strptime(date, format).date()) |
||
162 | db.session.add(total) |
||
163 | db.session.commit() |
||
164 | |||
253 | return minbalance, graphJSON |