|
1
|
|
|
"""Models package |
|
2
|
|
|
|
|
3
|
|
|
.. Authors: |
|
4
|
|
|
Philippe Dessauw |
|
5
|
|
|
[email protected] |
|
6
|
|
|
|
|
7
|
|
|
.. Sponsor: |
|
8
|
|
|
Alden Dima |
|
9
|
|
|
[email protected] |
|
10
|
|
|
Information Systems Group |
|
11
|
|
|
Software and Systems Division |
|
12
|
|
|
Information Technology Laboratory |
|
13
|
|
|
National Institute of Standards and Technology |
|
14
|
|
|
http://www.nist.gov/itl/ssd/is |
|
15
|
|
|
""" |
|
16
|
|
|
from __future__ import division |
|
17
|
|
|
from os import unlink |
|
18
|
|
|
from sklearn.linear_model.stochastic_gradient import SGDClassifier |
|
19
|
|
|
from denoiser.models.inline import Unigrams, Dictionary, Bigrams, AltCaseMap, OcrKeyMap, AnagramMap |
|
20
|
|
|
from denoiser.models.inline.ranking import rate_corrections |
|
21
|
|
|
from denoiser.models.inline.utils import init_correction_map, select_anagrams, select_ocrsims, build_candidates_list, \ |
|
22
|
|
|
correct_case, apply_bigram_boost, select_correction, extract_paragraph_bigrams, select_lower_edit_distance, \ |
|
23
|
|
|
select_best_alphabetical_word |
|
24
|
|
|
from denoiser.models.machine_learning import MachineLearningFeatures, MachineLearningAlgorithm |
|
25
|
|
|
import logging |
|
26
|
|
|
from os.path import exists, join |
|
27
|
|
|
from denoiser.models.indicators.lists import StrongIndicatorList, CleanIndicatorList |
|
28
|
|
|
from apputils.fileop import file_checksum |
|
29
|
|
|
from apputils.pickling import save, load |
|
30
|
|
|
|
|
31
|
|
|
|
|
32
|
|
|
class AbstractModel(object): |
|
33
|
|
|
"""Abstract model, contains main functions |
|
34
|
|
|
""" |
|
35
|
|
|
|
|
36
|
|
|
def __init__(self, app_config): |
|
37
|
|
|
self.config = app_config |
|
38
|
|
|
self.logger = logging.getLogger('local') |
|
39
|
|
|
|
|
40
|
|
|
self.hash_filename = join(app_config["dirs"]["models_root"], app_config["models"]["hashes"]) |
|
41
|
|
|
self.hash_list = [] |
|
42
|
|
|
|
|
43
|
|
|
if exists(self.hash_filename): |
|
44
|
|
|
self.hash_list = load(self.hash_filename) |
|
45
|
|
|
|
|
46
|
|
|
def is_preprocessed(self, filename): |
|
47
|
|
|
"""Determine if the given file has already been preprocessed (its data added to the models) |
|
48
|
|
|
|
|
49
|
|
|
Args: |
|
50
|
|
|
filename (str): Path of the given file |
|
51
|
|
|
|
|
52
|
|
|
Returns: |
|
53
|
|
|
int: 0 if not preprocess, 1 otherwise |
|
54
|
|
|
""" |
|
55
|
|
|
text_id = file_checksum(filename) |
|
56
|
|
|
|
|
57
|
|
|
if text_id not in self.hash_list: |
|
58
|
|
|
self.hash_list.append(text_id) |
|
59
|
|
|
save(self.hash_list, self.hash_filename) |
|
60
|
|
|
return 0 |
|
61
|
|
|
|
|
62
|
|
|
return 1 |
|
63
|
|
|
|
|
64
|
|
|
def load(self, text_data): |
|
65
|
|
|
"""Load text data to the model |
|
66
|
|
|
|
|
67
|
|
|
Args: |
|
68
|
|
|
text_data (dict): Text data |
|
69
|
|
|
|
|
70
|
|
|
Raise: |
|
71
|
|
|
NotImplementedError: Not yet implemented |
|
72
|
|
|
""" |
|
73
|
|
|
raise NotImplementedError() |
|
74
|
|
|
|
|
75
|
|
|
def correct(self, text_data): |
|
76
|
|
|
"""Save text data to the model |
|
77
|
|
|
|
|
78
|
|
|
Args: |
|
79
|
|
|
text_data (dict): Text data |
|
80
|
|
|
|
|
81
|
|
|
Raise: |
|
82
|
|
|
NotImplementedError: Not yet implemented |
|
83
|
|
|
""" |
|
84
|
|
|
raise NotImplementedError() |
|
85
|
|
|
|
|
86
|
|
|
|
|
87
|
|
|
class InlineModel(AbstractModel): |
|
88
|
|
|
"""Model for inline data structures |
|
89
|
|
|
""" |
|
90
|
|
|
|
|
91
|
|
|
def __init__(self, app_config): |
|
92
|
|
|
super(InlineModel, self).__init__(app_config) |
|
93
|
|
|
|
|
94
|
|
|
inline_models_dir = join( |
|
95
|
|
|
app_config["root"], |
|
96
|
|
|
app_config["dirs"]["models_root"], |
|
97
|
|
|
app_config["dirs"]["models"]["inline"] |
|
98
|
|
|
) |
|
99
|
|
|
inline_models_key = app_config["models"]["inline"] |
|
100
|
|
|
|
|
101
|
|
|
self.dictionary = Dictionary(join(inline_models_dir, inline_models_key["dictionary"])) |
|
102
|
|
|
|
|
103
|
|
|
self.unigrams = Unigrams(join(inline_models_dir, inline_models_key["unigrams"])) |
|
104
|
|
|
self.tmp_unigrams_filename = self.unigrams.filename + app_config["exts"]["tmp"] |
|
105
|
|
|
|
|
106
|
|
|
self.bigrams = Bigrams(join(inline_models_dir, inline_models_key["bigrams"])) |
|
107
|
|
|
|
|
108
|
|
|
self.altcase_map = AltCaseMap(join(inline_models_dir, inline_models_key["altcase"])) |
|
109
|
|
|
self.tmp_altcase_filename = self.altcase_map.filename + app_config["exts"]["tmp"] |
|
110
|
|
|
|
|
111
|
|
|
self.ocrkey_map = OcrKeyMap(join(inline_models_dir, inline_models_key["ocr_keys"])) |
|
112
|
|
|
self.anagram_map = AnagramMap(join(inline_models_dir, inline_models_key["anagrams"])) |
|
113
|
|
|
|
|
114
|
|
|
def load(self, text_data): |
|
115
|
|
|
"""Load text data to the model |
|
116
|
|
|
|
|
117
|
|
|
Args: |
|
118
|
|
|
text_data (`Text`): Text data |
|
119
|
|
|
""" |
|
120
|
|
|
if self.is_preprocessed(text_data.filename) != 0: |
|
121
|
|
|
self.logger.debug(text_data.filename+" already loaded: skipping it.") |
|
122
|
|
|
return |
|
123
|
|
|
|
|
124
|
|
|
tmp_u = Unigrams(self.tmp_unigrams_filename) |
|
125
|
|
|
word_list = tmp_u.append_data(text_data) |
|
126
|
|
|
|
|
127
|
|
|
self.bigrams.append_data(word_list) |
|
128
|
|
|
|
|
129
|
|
|
tmp_ac = AltCaseMap(self.tmp_altcase_filename) |
|
130
|
|
|
tmp_ac.append_data(tmp_u.raw_unigrams) |
|
131
|
|
|
|
|
132
|
|
|
tmp_u.generate_low_case(tmp_ac.altcase_map) |
|
133
|
|
|
|
|
134
|
|
|
self.ocrkey_map.append_data(tmp_u.raw_unigrams) |
|
135
|
|
|
|
|
136
|
|
|
# Updating data |
|
137
|
|
|
self.unigrams.raw_unigrams += tmp_u.raw_unigrams |
|
138
|
|
|
self.unigrams.ngrams += tmp_u.ngrams |
|
139
|
|
|
self.unigrams.prune(0.7) |
|
140
|
|
|
self.unigrams.save() |
|
141
|
|
|
|
|
142
|
|
|
combine_struct = {key: set() for key in tmp_ac.altcase_map.keys() + self.altcase_map.altcase_map.keys()} |
|
143
|
|
|
for key, value in tmp_ac.altcase_map.items() + self.altcase_map.altcase_map.items(): |
|
144
|
|
|
combine_struct[key] = combine_struct[key].union(value) |
|
145
|
|
|
|
|
146
|
|
|
self.altcase_map.altcase_map = combine_struct |
|
147
|
|
|
self.altcase_map.prune(self.unigrams.ngrams_pruned) |
|
148
|
|
|
self.altcase_map.save() |
|
149
|
|
|
|
|
150
|
|
|
unlink(self.tmp_unigrams_filename) |
|
151
|
|
|
unlink(self.tmp_altcase_filename) |
|
152
|
|
|
|
|
153
|
|
|
self.anagram_map.append_data(self.bigrams.ngrams_pruned, self.unigrams.ngrams_pruned) |
|
154
|
|
|
self.dictionary.append_data(self.unigrams.ngrams_pruned) |
|
155
|
|
|
|
|
156
|
|
|
self.logger.info(text_data.filename+"'s datastructures loaded") |
|
157
|
|
|
|
|
158
|
|
|
def correct(self, text_data): |
|
159
|
|
|
"""Correct text data |
|
160
|
|
|
|
|
161
|
|
|
Args: |
|
162
|
|
|
text_data (`Text`): Text data |
|
163
|
|
|
""" |
|
164
|
|
|
correction_data = self.correction_data() |
|
165
|
|
|
|
|
166
|
|
|
for paragraph in text_data.text: |
|
167
|
|
|
for line in paragraph: |
|
168
|
|
|
for token in line.tokens: |
|
169
|
|
|
token[2] = init_correction_map(token[1], correction_data["dictionary"]) |
|
170
|
|
|
|
|
171
|
|
|
# Skip some correction steps if the token is too short, in the dictionary or already identified as |
|
172
|
|
|
# garbage |
|
173
|
|
|
if not token[2] is None and len(token[2]) == 0: |
|
174
|
|
|
anagrams = select_anagrams(token[1], correction_data) |
|
175
|
|
|
ocr_sims = select_ocrsims(token[1], correction_data) |
|
176
|
|
|
|
|
177
|
|
|
token[2] = build_candidates_list(token[1], anagrams, ocr_sims, correction_data) |
|
178
|
|
|
token[2] = correct_case(token[1], token[2], correction_data) |
|
179
|
|
|
|
|
180
|
|
|
token[2] = rate_corrections(token[2]) |
|
181
|
|
|
|
|
182
|
|
|
if len(token[2]) == 0: # No correction has been found |
|
183
|
|
|
token[2] = None |
|
184
|
|
|
|
|
185
|
|
|
# Applying the bigram boost to the tokens |
|
186
|
|
|
bigrams = extract_paragraph_bigrams(paragraph) |
|
187
|
|
|
apply_bigram_boost(paragraph, bigrams, correction_data["occurence_map"]) |
|
188
|
|
|
|
|
189
|
|
|
# Select the appropriate correction |
|
190
|
|
|
for line in paragraph: |
|
191
|
|
|
for token in line.tokens: |
|
192
|
|
|
token[2] = select_correction(token[1], token[2]) |
|
193
|
|
|
|
|
194
|
|
|
if token[2] is not None and len(token[2]) > 1: |
|
195
|
|
|
tkn_list = [tkn for tkn, sc in token[2].items() if sc == max(token[2].values())] |
|
196
|
|
|
|
|
197
|
|
|
if len(tkn_list) != 1: |
|
198
|
|
|
tkn_list = select_lower_edit_distance(token[1], {tkn: token[2][tkn] for tkn in tkn_list}) |
|
199
|
|
|
|
|
200
|
|
|
if len(tkn_list) != 1: |
|
201
|
|
|
tkn_list = [select_best_alphabetical_word(token[1], tkn_list)] |
|
202
|
|
|
|
|
203
|
|
|
token[2] = {tkn: token[2][tkn] for tkn in tkn_list} |
|
204
|
|
|
|
|
205
|
|
|
def correction_data(self): |
|
206
|
|
|
"""Get the correction data |
|
207
|
|
|
|
|
208
|
|
|
Returns: |
|
209
|
|
|
dict: Correction data |
|
210
|
|
|
""" |
|
211
|
|
|
return { |
|
212
|
|
|
"occurence_map": self.unigrams.ngrams + self.bigrams.ngrams, |
|
213
|
|
|
"altcase": self.altcase_map.altcase_map, |
|
214
|
|
|
"ocrkeys": self.ocrkey_map.ocrkey_map, |
|
215
|
|
|
"anagrams": self.anagram_map.anagram_hashmap, |
|
216
|
|
|
"alphabet": self.anagram_map.anagram_alphabet, |
|
217
|
|
|
"dictionary": self.dictionary.dictionary |
|
218
|
|
|
} |
|
219
|
|
|
|
|
220
|
|
|
|
|
221
|
|
|
class IndicatorModel(AbstractModel): |
|
222
|
|
|
"""Model for garbage strings indicators |
|
223
|
|
|
""" |
|
224
|
|
|
|
|
225
|
|
|
def __init__(self, app_config): |
|
226
|
|
|
super(IndicatorModel, self).__init__(app_config) |
|
227
|
|
|
|
|
228
|
|
|
self.model = { |
|
229
|
|
|
"strong": StrongIndicatorList(), |
|
230
|
|
|
"clean": CleanIndicatorList() |
|
231
|
|
|
} |
|
232
|
|
|
|
|
233
|
|
|
def load(self, text_data): |
|
234
|
|
|
"""Load text data to the model |
|
235
|
|
|
|
|
236
|
|
|
Args: |
|
237
|
|
|
text_data (`Text`): Text data |
|
238
|
|
|
""" |
|
239
|
|
|
for indicator_list in self.model.values(): |
|
240
|
|
|
indicator_list.set_stats(text_data.stats) |
|
241
|
|
|
|
|
242
|
|
|
def correct(self, text_data): |
|
243
|
|
|
"""Correct text data |
|
244
|
|
|
|
|
245
|
|
|
Args: |
|
246
|
|
|
text_data (`Text`): Text data |
|
247
|
|
|
""" |
|
248
|
|
|
# ======================= |
|
249
|
|
|
# Strong indicators |
|
250
|
|
|
# ======================= |
|
251
|
|
|
lines = [line for paragraph in text_data.text for line in paragraph |
|
252
|
|
|
if line.grade != 0 and self.model["strong"].match(line)] |
|
253
|
|
|
|
|
254
|
|
|
for line in lines: |
|
255
|
|
|
line.set_garbage() |
|
256
|
|
|
|
|
257
|
|
|
# ======================= |
|
258
|
|
|
# Clean indicators |
|
259
|
|
|
# ======================= |
|
260
|
|
|
lines = [line for paragraph in text_data.text for line in paragraph |
|
261
|
|
|
if line.grade != 0 and self.model["clean"].match(line)] |
|
262
|
|
|
|
|
263
|
|
|
for line in lines: |
|
264
|
|
|
line.set_clean() |
|
265
|
|
|
|
|
266
|
|
|
# ======================= |
|
267
|
|
|
# Post processing |
|
268
|
|
|
# ======================= |
|
269
|
|
|
lines = [line for paragraph in text_data.text for line in paragraph] |
|
270
|
|
|
previous_line = None |
|
271
|
|
|
|
|
272
|
|
|
# Smoothing function |
|
273
|
|
|
for line in lines: |
|
274
|
|
|
# Decrease grade if previous line is a garbage string |
|
275
|
|
|
if previous_line is not None and previous_line.grade == 0 and line.grade != 5: |
|
276
|
|
|
line.decrease_grade() |
|
277
|
|
|
|
|
278
|
|
|
# Decrease grade of previous line |
|
279
|
|
|
if line.grade == 0 and previous_line is not None and previous_line.grade != 5: |
|
280
|
|
|
previous_line.decrease_grade() |
|
281
|
|
|
|
|
282
|
|
|
previous_line = line |
|
283
|
|
|
|
|
284
|
|
|
|
|
285
|
|
|
class MachineLearningModel(AbstractModel): |
|
286
|
|
|
"""Model storing all machine learning data |
|
287
|
|
|
""" |
|
288
|
|
|
|
|
289
|
|
|
def __init__(self, app_config): |
|
290
|
|
|
super(MachineLearningModel, self).__init__(app_config) |
|
291
|
|
|
|
|
292
|
|
|
self.model = { |
|
293
|
|
|
"algo": MachineLearningAlgorithm(), |
|
294
|
|
|
"features": MachineLearningFeatures() |
|
295
|
|
|
} |
|
296
|
|
|
|
|
297
|
|
|
def train(self, dataset): |
|
298
|
|
|
"""Train the model with a dataset |
|
299
|
|
|
|
|
300
|
|
|
Args: |
|
301
|
|
|
dataset (list): List of training files |
|
302
|
|
|
""" |
|
303
|
|
|
# Get the original training set |
|
304
|
|
|
training_set = self.model["algo"].training_set |
|
305
|
|
|
|
|
306
|
|
|
# Append the new data to it |
|
307
|
|
|
for text in dataset: |
|
308
|
|
|
self.logger.debug("Processing "+text.filename+"...") |
|
309
|
|
|
unigrams = Unigrams(join(self.config["root"], |
|
310
|
|
|
self.config["dirs"]["models_root"], |
|
311
|
|
|
self.config["dirs"]["models"]["inline"], |
|
312
|
|
|
self.config["models"]["inline"]["unigrams"],)) |
|
313
|
|
|
|
|
314
|
|
|
for p in text.text: |
|
315
|
|
|
for line in p: |
|
316
|
|
|
if line.grade % 5 != 0: # Unclassified lines are useless for the training |
|
317
|
|
|
continue |
|
318
|
|
|
|
|
319
|
|
|
f = MachineLearningFeatures() |
|
320
|
|
|
features = f.extract_features(line, unigrams.ngrams, text.stats) |
|
321
|
|
|
result = int(line.grade / 5) |
|
322
|
|
|
|
|
323
|
|
|
training_set["features"].append(features) |
|
324
|
|
|
training_set["results"].append(result) |
|
325
|
|
|
|
|
326
|
|
|
self.logger.debug("Saving training set...") |
|
327
|
|
|
save(training_set, join(self.config["dirs"]["models_root"], |
|
328
|
|
|
self.config["dirs"]["models"]["learning"], |
|
329
|
|
|
self.config["models"]["learning"]["training_set"])) |
|
330
|
|
|
|
|
331
|
|
|
self.logger.debug("Training model...") |
|
332
|
|
|
ml_classifier = SGDClassifier(loss="log", class_weight="auto") |
|
333
|
|
|
self.model["algo"].set_classifier(ml_classifier) |
|
334
|
|
|
self.model["algo"].set_training_set(training_set["features"], training_set["results"]) |
|
335
|
|
|
self.model["algo"].train() |
|
336
|
|
|
|
|
337
|
|
|
save(self.model["algo"].classifier, join(self.config["dirs"]["models_root"], |
|
338
|
|
|
self.config["dirs"]["models"]["learning"], |
|
339
|
|
|
self.config["models"]["learning"]["classifier"])) |
|
340
|
|
|
|
|
341
|
|
|
def load(self, text_data): |
|
342
|
|
|
"""Load text data to the model |
|
343
|
|
|
|
|
344
|
|
|
Args: |
|
345
|
|
|
text_data (`Text`): Text data |
|
346
|
|
|
""" |
|
347
|
|
|
pass |
|
348
|
|
|
|
|
349
|
|
|
def correct(self, text_data): |
|
350
|
|
|
"""Correct text data |
|
351
|
|
|
|
|
352
|
|
|
Args: |
|
353
|
|
|
text_data (`Text`): Text data |
|
354
|
|
|
""" |
|
355
|
|
|
unigrams = Unigrams(join(self.config["root"], |
|
356
|
|
|
self.config["dirs"]["models_root"], |
|
357
|
|
|
self.config["dirs"]["models"]["inline"], |
|
358
|
|
|
self.config["models"]["inline"]["unigrams"],)) |
|
359
|
|
|
|
|
360
|
|
|
ml_classifier = load(join(self.config["dirs"]["models_root"], |
|
361
|
|
|
self.config["dirs"]["models"]["learning"], |
|
362
|
|
|
self.config["models"]["learning"]["classifier"])) |
|
363
|
|
|
|
|
364
|
|
|
if ml_classifier is None: |
|
365
|
|
|
return |
|
366
|
|
|
|
|
367
|
|
|
self.model["algo"].set_classifier(ml_classifier) |
|
368
|
|
|
|
|
369
|
|
|
for paragraph in text_data.text: |
|
370
|
|
|
for line in paragraph: |
|
371
|
|
|
if line.grade % 5 == 0: |
|
372
|
|
|
continue |
|
373
|
|
|
|
|
374
|
|
|
f = MachineLearningFeatures() |
|
375
|
|
|
features = f.extract_features(line, unigrams.ngrams, text_data.stats) |
|
376
|
|
|
line.grade = self.model["algo"].classify(features) * 5 |
|
377
|
|
|
|