|
1
|
|
|
"""Package containing all the main inline structures |
|
2
|
|
|
|
|
3
|
|
|
.. Authors: |
|
4
|
|
|
Philippe Dessauw |
|
5
|
|
|
[email protected] |
|
6
|
|
|
|
|
7
|
|
|
.. Sponsor: |
|
8
|
|
|
Alden Dima |
|
9
|
|
|
[email protected] |
|
10
|
|
|
Information Systems Group |
|
11
|
|
|
Software and Systems Division |
|
12
|
|
|
Information Technology Laboratory |
|
13
|
|
|
National Institute of Standards and Technology |
|
14
|
|
|
http://www.nist.gov/itl/ssd/is |
|
15
|
|
|
""" |
|
16
|
|
|
from __future__ import division |
|
17
|
|
|
from math import floor |
|
18
|
|
|
from numpy.lib.function_base import median |
|
19
|
|
|
from collections import Counter |
|
20
|
|
|
import inspect |
|
21
|
|
|
from os.path import exists |
|
22
|
|
|
import operator |
|
23
|
|
|
from nltk.util import ngrams as nltk_ngrams |
|
24
|
|
|
from denoiser.models.inline.hashing import ocr_key_list_to_str, ocr_key_hash, anagram_hash |
|
25
|
|
|
from apputils.pickling import load, save |
|
26
|
|
|
import re |
|
27
|
|
|
from operator import add |
|
28
|
|
|
|
|
29
|
|
|
|
|
30
|
|
|
def truncate_map(occurence_map): |
|
31
|
|
|
"""Truncate an occurence map by removing uncommon iteration |
|
32
|
|
|
|
|
33
|
|
|
Parameters: |
|
34
|
|
|
occurence_map (dict): Dictionary containing word as key and occurence as value |
|
35
|
|
|
|
|
36
|
|
|
Returns: |
|
37
|
|
|
dict: Truncated map |
|
38
|
|
|
""" |
|
39
|
|
|
# Get occurences distribution |
|
40
|
|
|
distribution = Counter(occurence_map.values()) |
|
41
|
|
|
dist_median = median(distribution.values()) |
|
42
|
|
|
|
|
43
|
|
|
# Compute upper bound |
|
44
|
|
|
limit = 0.99 |
|
45
|
|
|
dist_upper_median = sorted([v for v in distribution.values() if v > dist_median]) |
|
46
|
|
|
dist_upper_bound = int(floor(len(dist_upper_median) * limit)) |
|
47
|
|
|
|
|
48
|
|
|
# Compute new distribution |
|
49
|
|
|
min_dist_value = dist_upper_median[dist_upper_bound - 1] |
|
50
|
|
|
distribution = {k: v for k, v in distribution.items() if v <= min_dist_value} |
|
51
|
|
|
|
|
52
|
|
|
# Return new occurence map |
|
53
|
|
|
return {k: v for k, v in occurence_map.items() if v in distribution.keys()} |
|
54
|
|
|
|
|
55
|
|
|
|
|
56
|
|
|
class InlineStructure(object): |
|
57
|
|
|
"""Abstract inline structure |
|
58
|
|
|
""" |
|
59
|
|
|
|
|
60
|
|
|
def __init__(self, filename): |
|
61
|
|
|
self.filename = filename |
|
62
|
|
|
|
|
63
|
|
|
if exists(self.filename): |
|
64
|
|
|
self.load() |
|
65
|
|
|
|
|
66
|
|
|
def append_data(self, **kwargs): |
|
67
|
|
|
"""Append data to the structure |
|
68
|
|
|
|
|
69
|
|
|
Args: |
|
70
|
|
|
**kwargs: Arbitrary keyword arguments |
|
71
|
|
|
|
|
72
|
|
|
Raise: |
|
73
|
|
|
NotImplementedError: Not yet implemented |
|
74
|
|
|
""" |
|
75
|
|
|
raise NotImplementedError("Function "+inspect.stack()[0][3]+" has not been implemented") |
|
76
|
|
|
|
|
77
|
|
|
def load(self): |
|
78
|
|
|
"""Load the structure from the file if it exists |
|
79
|
|
|
""" |
|
80
|
|
|
if not exists(self.filename): |
|
81
|
|
|
return |
|
82
|
|
|
|
|
83
|
|
|
def save(self): |
|
84
|
|
|
"""Save the structure to the file |
|
85
|
|
|
|
|
86
|
|
|
Raise: |
|
87
|
|
|
NotImplementedError: Not yet implemented |
|
88
|
|
|
""" |
|
89
|
|
|
raise NotImplementedError("Function "+inspect.stack()[0][3]+" has not been implemented") |
|
90
|
|
|
|
|
91
|
|
|
|
|
92
|
|
|
class NGramsStructure(InlineStructure): |
|
93
|
|
|
"""Abstract n-gram structure |
|
94
|
|
|
""" |
|
95
|
|
|
|
|
96
|
|
|
def __init__(self, filename): |
|
97
|
|
|
self.ngrams = Counter() |
|
98
|
|
|
self.ngrams_pruned = Counter() |
|
99
|
|
|
|
|
100
|
|
|
super(NGramsStructure, self).__init__(filename) |
|
101
|
|
|
|
|
102
|
|
|
def append_data(self, **kwargs): |
|
103
|
|
|
raise NotImplementedError("Function "+inspect.stack()[0][3]+" has not been implemented") |
|
104
|
|
|
|
|
105
|
|
|
def prune(self, rate): |
|
106
|
|
|
"""Prune ngrams list given the rate of data to keep |
|
107
|
|
|
|
|
108
|
|
|
Args: |
|
109
|
|
|
rate (float): Limit rate of data to keep |
|
110
|
|
|
""" |
|
111
|
|
|
if rate >= 1: |
|
112
|
|
|
self.ngrams_pruned = self.ngrams |
|
113
|
|
|
return |
|
114
|
|
|
|
|
115
|
|
|
pruned_target = {} |
|
116
|
|
|
|
|
117
|
|
|
truncated_target = truncate_map(self.ngrams) |
|
118
|
|
|
sorted_target = sorted(truncated_target.iteritems(), key=operator.itemgetter(1), reverse=True) |
|
119
|
|
|
|
|
120
|
|
|
total = len(sorted_target) |
|
121
|
|
|
registered = 0 |
|
122
|
|
|
current_occ = 0 |
|
123
|
|
|
for (data, occurence) in sorted_target: |
|
124
|
|
|
if registered / total >= rate and occurence != current_occ: |
|
125
|
|
|
break |
|
126
|
|
|
|
|
127
|
|
|
current_occ = occurence |
|
128
|
|
|
pruned_target[data] = occurence |
|
129
|
|
|
registered += 1 |
|
130
|
|
|
|
|
131
|
|
|
self.ngrams_pruned = Counter(pruned_target) |
|
132
|
|
|
|
|
133
|
|
|
def load(self): |
|
134
|
|
|
super(NGramsStructure, self).load() |
|
135
|
|
|
|
|
136
|
|
|
def save(self): |
|
137
|
|
|
super(NGramsStructure, self).save() |
|
138
|
|
|
|
|
139
|
|
|
|
|
140
|
|
|
class Dictionary(InlineStructure): |
|
141
|
|
|
"""Dictionary |
|
142
|
|
|
""" |
|
143
|
|
|
|
|
144
|
|
|
def __init__(self, filename): |
|
145
|
|
|
self.dictionary = list() |
|
146
|
|
|
|
|
147
|
|
|
super(Dictionary, self).__init__(filename) |
|
148
|
|
|
|
|
149
|
|
|
def append_data(self, unigrams): |
|
150
|
|
|
word_list = [] |
|
151
|
|
|
|
|
152
|
|
|
aspell_dict = "models/aspell.en.dict" |
|
153
|
|
|
with open(aspell_dict, "r") as f: |
|
154
|
|
|
for line in f: |
|
155
|
|
|
word_list.append(line.strip("\r\n")) |
|
156
|
|
|
|
|
157
|
|
|
plc_set = set(unigrams) |
|
158
|
|
|
word_set = set(word_list) |
|
159
|
|
|
|
|
160
|
|
|
self.dictionary = list(plc_set.intersection(word_set)) |
|
161
|
|
|
self.save() |
|
162
|
|
|
|
|
163
|
|
|
def load(self): |
|
164
|
|
|
super(Dictionary, self).load() |
|
165
|
|
|
|
|
166
|
|
|
self.dictionary = load(self.filename) |
|
167
|
|
|
|
|
168
|
|
|
def save(self): |
|
169
|
|
|
save(self.dictionary, self.filename) |
|
170
|
|
|
|
|
171
|
|
|
|
|
172
|
|
|
class Unigrams(NGramsStructure): |
|
173
|
|
|
"""Unigrams list |
|
174
|
|
|
""" |
|
175
|
|
|
|
|
176
|
|
|
def __init__(self, filename): |
|
177
|
|
|
self.raw_unigrams = Counter() # Unigrams not submitted to case modification |
|
178
|
|
|
|
|
179
|
|
|
super(Unigrams, self).__init__(filename) |
|
180
|
|
|
|
|
181
|
|
|
def append_data(self, text_data): |
|
182
|
|
|
unigrams = [token[1] for paragraph in text_data.text for line in paragraph for token in line.tokens |
|
183
|
|
|
if line.grade != 0 and not token[1] is None and len(token[1]) > 1] |
|
184
|
|
|
|
|
185
|
|
|
unigrams_counter = Counter(unigrams) |
|
186
|
|
|
self.raw_unigrams += unigrams_counter |
|
187
|
|
|
|
|
188
|
|
|
self.save() |
|
189
|
|
|
return unigrams |
|
190
|
|
|
|
|
191
|
|
|
def generate_low_case(self, altcase_map): |
|
192
|
|
|
"""Generate lower case unigrams |
|
193
|
|
|
|
|
194
|
|
|
Args: |
|
195
|
|
|
altcase_map (dict): List of alternative case word for a given lowercase word |
|
196
|
|
|
""" |
|
197
|
|
|
low_unigrams = {key: 0 for key in altcase_map.keys()} |
|
198
|
|
|
|
|
199
|
|
|
for unigram, alt_case_list in altcase_map.items(): |
|
200
|
|
|
low_unigrams[unigram] = sum([self.raw_unigrams[alt_case] for alt_case in alt_case_list]) |
|
201
|
|
|
|
|
202
|
|
|
self.ngrams = Counter(low_unigrams) |
|
203
|
|
|
self.save() |
|
204
|
|
|
|
|
205
|
|
|
def load(self): |
|
206
|
|
|
super(Unigrams, self).load() |
|
207
|
|
|
|
|
208
|
|
|
data = load(self.filename) |
|
209
|
|
|
|
|
210
|
|
|
self.raw_unigrams = data["raw_unigrams"] |
|
211
|
|
|
self.ngrams = data["unigrams"] |
|
212
|
|
|
self.ngrams_pruned = data["unigrams_pruned"] |
|
213
|
|
|
|
|
214
|
|
|
def save(self): |
|
215
|
|
|
data = { |
|
216
|
|
|
"raw_unigrams": self.raw_unigrams, |
|
217
|
|
|
"unigrams": self.ngrams, |
|
218
|
|
|
"unigrams_pruned": self.ngrams_pruned |
|
219
|
|
|
} |
|
220
|
|
|
|
|
221
|
|
|
save(data, self.filename) |
|
222
|
|
|
|
|
223
|
|
|
|
|
224
|
|
|
class Bigrams(NGramsStructure): |
|
225
|
|
|
"""Bigrams list |
|
226
|
|
|
""" |
|
227
|
|
|
|
|
228
|
|
|
def __init__(self, filename): |
|
229
|
|
|
super(Bigrams, self).__init__(filename) |
|
230
|
|
|
|
|
231
|
|
|
def append_data(self, unigrams): |
|
232
|
|
|
bigrams = [bigram[0].lower()+" "+bigram[1].lower() for bigram in nltk_ngrams(unigrams, 2) |
|
233
|
|
|
if len(bigram[0]) > 1 and len(bigram[1]) > 1] |
|
234
|
|
|
|
|
235
|
|
|
self.ngrams += Counter(bigrams) |
|
236
|
|
|
self.prune(0.35) |
|
237
|
|
|
|
|
238
|
|
|
self.save() |
|
239
|
|
|
|
|
240
|
|
|
def load(self): |
|
241
|
|
|
super(Bigrams, self).load() |
|
242
|
|
|
|
|
243
|
|
|
data = load(self.filename) |
|
244
|
|
|
|
|
245
|
|
|
self.ngrams = data["bigrams"] |
|
246
|
|
|
self.ngrams_pruned = data["bigrams_pruned"] |
|
247
|
|
|
|
|
248
|
|
|
def save(self): |
|
249
|
|
|
data = { |
|
250
|
|
|
"bigrams": self.ngrams, |
|
251
|
|
|
"bigrams_pruned": self.ngrams_pruned |
|
252
|
|
|
} |
|
253
|
|
|
|
|
254
|
|
|
save(data, self.filename) |
|
255
|
|
|
|
|
256
|
|
|
|
|
257
|
|
|
class AltCaseMap(InlineStructure): |
|
258
|
|
|
"""Alternative case map |
|
259
|
|
|
""" |
|
260
|
|
|
|
|
261
|
|
|
def __init__(self, filename): |
|
262
|
|
|
self.altcase_map = {} |
|
263
|
|
|
self.altcase_pruned_map = {} |
|
264
|
|
|
|
|
265
|
|
|
super(AltCaseMap, self).__init__(filename) |
|
266
|
|
|
|
|
267
|
|
|
def append_data(self, unigrams): |
|
268
|
|
|
_altcase_map = {unigram.lower(): set() for unigram in unigrams.keys()} |
|
269
|
|
|
|
|
270
|
|
|
for unigram in unigrams.keys(): |
|
271
|
|
|
_altcase_map[unigram.lower()].add(unigram) |
|
272
|
|
|
|
|
273
|
|
|
self.altcase_map = {key: set(value) for key, value in _altcase_map.items()} |
|
274
|
|
|
self.save() |
|
275
|
|
|
|
|
276
|
|
|
def prune(self, unigrams_pruned): |
|
277
|
|
|
"""Prume the map given selected unigrams |
|
278
|
|
|
|
|
279
|
|
|
Args: |
|
280
|
|
|
unigrams_pruned (dict): List of unigrams to keep in the final list |
|
281
|
|
|
""" |
|
282
|
|
|
self.altcase_pruned_map = {unigram: self.altcase_map[unigram] for unigram in unigrams_pruned.keys()} |
|
283
|
|
|
self.save() |
|
284
|
|
|
|
|
285
|
|
|
def load(self): |
|
286
|
|
|
super(AltCaseMap, self).load() |
|
287
|
|
|
|
|
288
|
|
|
data = load(self.filename) |
|
289
|
|
|
|
|
290
|
|
|
self.altcase_map = data["altcase"] |
|
291
|
|
|
self.altcase_pruned_map = data["altcase_pruned"] |
|
292
|
|
|
|
|
293
|
|
|
def save(self): |
|
294
|
|
|
data = { |
|
295
|
|
|
"altcase": self.altcase_map, |
|
296
|
|
|
"altcase_pruned": self.altcase_pruned_map |
|
297
|
|
|
} |
|
298
|
|
|
|
|
299
|
|
|
save(data, self.filename) |
|
300
|
|
|
|
|
301
|
|
|
|
|
302
|
|
|
class OcrKeyMap(InlineStructure): |
|
303
|
|
|
"""OCR Key map |
|
304
|
|
|
""" |
|
305
|
|
|
|
|
306
|
|
|
def __init__(self, filename): |
|
307
|
|
|
self.ocrkey_map = {} |
|
308
|
|
|
|
|
309
|
|
|
super(OcrKeyMap, self).__init__(filename) |
|
310
|
|
|
|
|
311
|
|
|
def append_data(self, unigrams): |
|
312
|
|
|
word_list = [] |
|
313
|
|
|
|
|
314
|
|
|
aspell_dict = "models/aspell.en.dict" |
|
315
|
|
|
with open(aspell_dict, "r") as f: |
|
316
|
|
|
for line in f: |
|
317
|
|
|
word_list.append(line.strip("\r\n")) |
|
318
|
|
|
|
|
319
|
|
|
word_set = set(word_list) |
|
320
|
|
|
unigram_set = set(unigrams.keys()) |
|
321
|
|
|
|
|
322
|
|
|
ocr_key_map = {ocr_key_list_to_str(ocr_key_hash(word)): set() for word in unigram_set.intersection(word_set)} |
|
323
|
|
|
|
|
324
|
|
|
# Every word contained in the mixed case map and the dictionary |
|
325
|
|
|
for word in unigram_set.intersection(word_set): |
|
326
|
|
|
h_list = ocr_key_hash(word) |
|
327
|
|
|
h_str = ocr_key_list_to_str(h_list) |
|
328
|
|
|
|
|
329
|
|
|
ocr_key_map[h_str].add(word) # Add the word to the tab |
|
330
|
|
|
|
|
331
|
|
|
combine_struct = {key: set() for key in self.ocrkey_map.keys() + ocr_key_map.keys()} |
|
332
|
|
|
|
|
333
|
|
|
for key, value in self.ocrkey_map.items() + ocr_key_map.items(): |
|
334
|
|
|
combine_struct[key] = combine_struct[key].union(value) |
|
335
|
|
|
|
|
336
|
|
|
self.ocrkey_map = combine_struct |
|
337
|
|
|
self.save() |
|
338
|
|
|
|
|
339
|
|
|
def load(self): |
|
340
|
|
|
super(OcrKeyMap, self).load() |
|
341
|
|
|
|
|
342
|
|
|
self.ocrkey_map = load(self.filename) |
|
343
|
|
|
|
|
344
|
|
|
def save(self): |
|
345
|
|
|
save(self.ocrkey_map, self.filename) |
|
346
|
|
|
|
|
347
|
|
|
|
|
348
|
|
|
class AnagramMap(InlineStructure): |
|
349
|
|
|
"""Anagram map |
|
350
|
|
|
""" |
|
351
|
|
|
|
|
352
|
|
|
def __init__(self, filename): |
|
353
|
|
|
self.anagram_hashmap = {} |
|
354
|
|
|
self.anagram_alphabet = {} |
|
355
|
|
|
|
|
356
|
|
|
super(AnagramMap, self).__init__(filename) |
|
357
|
|
|
|
|
358
|
|
|
def append_data(self, bigrams, unigrams): |
|
359
|
|
|
anaghash_map = {anagram_hash(word): set() for word in bigrams.keys() + unigrams.keys()} |
|
360
|
|
|
|
|
361
|
|
|
for word in bigrams.keys() + unigrams.keys(): |
|
362
|
|
|
anaghash_map[anagram_hash(word)].add(word) |
|
363
|
|
|
|
|
364
|
|
|
self.anagram_hashmap = anaghash_map |
|
365
|
|
|
|
|
366
|
|
|
clean_word = re.compile(r"^[a-zA-Z '-]+$") |
|
367
|
|
|
alphabet = set() |
|
368
|
|
|
|
|
369
|
|
|
for word in unigrams: |
|
370
|
|
|
word = " "+word+" " |
|
371
|
|
|
chars = [char for char in word] # Getting letters from the word |
|
372
|
|
|
chars += map(add, chars[:-1], chars[1:]) # Adding bigrams to the list |
|
373
|
|
|
|
|
374
|
|
|
alphabet = alphabet.union([anagram_hash(char) for char in set(chars) |
|
375
|
|
|
if not clean_word.match(char) is None]) |
|
376
|
|
|
|
|
377
|
|
|
alphabet.add(0) |
|
378
|
|
|
|
|
379
|
|
|
self.anagram_alphabet = alphabet |
|
380
|
|
|
self.save() |
|
381
|
|
|
|
|
382
|
|
|
def load(self): |
|
383
|
|
|
super(AnagramMap, self).load() |
|
384
|
|
|
|
|
385
|
|
|
data = load(self.filename) |
|
386
|
|
|
|
|
387
|
|
|
self.anagram_hashmap = data["hashmap"] |
|
388
|
|
|
self.anagram_alphabet = data["alphabet"] |
|
389
|
|
|
|
|
390
|
|
|
def save(self): |
|
391
|
|
|
data = { |
|
392
|
|
|
"hashmap": self.anagram_hashmap, |
|
393
|
|
|
"alphabet": self.anagram_alphabet |
|
394
|
|
|
} |
|
395
|
|
|
|
|
396
|
|
|
save(data, self.filename) |
|
397
|
|
|
|