1
|
|
|
import uuid |
2
|
|
|
import json |
3
|
|
|
import xmlrpclib |
4
|
|
|
import math |
5
|
|
|
import logging |
6
|
|
|
|
7
|
|
|
from django.db import models |
8
|
|
|
from django.db.models.signals import post_save |
9
|
|
|
from django.dispatch import receiver |
10
|
|
|
from django.core.mail import mail_managers |
11
|
|
|
from django.http import HttpResponse |
12
|
|
|
from django.conf import settings |
13
|
|
|
|
14
|
|
|
from .graph import Graph |
15
|
|
|
from .node import Node |
16
|
|
|
from .configuration import Configuration |
17
|
|
|
from .node_configuration import NodeConfiguration |
18
|
|
|
from .result import Result |
19
|
|
|
from ore.models import xml_backend |
20
|
|
|
from ore.middleware import HttpResponseServerErrorAnswer |
21
|
|
|
from .xml_configurations import FeatureChoice, InclusionChoice, RedundancyChoice |
22
|
|
|
from .xml_backend import AnalysisResult, MincutResult, SimulationResult |
23
|
|
|
|
24
|
|
|
|
25
|
|
|
logger = logging.getLogger('ore') |
26
|
|
|
|
27
|
|
|
|
28
|
|
|
class NativeXmlField(models.Field): |
29
|
|
|
|
30
|
|
|
def db_type(self, connection): |
31
|
|
|
return 'xml' |
32
|
|
|
|
33
|
|
|
|
34
|
|
|
def gen_uuid(): |
35
|
|
|
return str(uuid.uuid4()) |
36
|
|
|
|
37
|
|
|
|
38
|
|
|
class Job(models.Model): |
39
|
|
|
|
40
|
|
|
class Meta: |
41
|
|
|
app_label = 'ore' |
42
|
|
|
|
43
|
|
|
MINCUT_JOB = 'mincut' |
44
|
|
|
TOP_EVENT_JOB = 'topevent' |
45
|
|
|
SIMULATION_JOB = 'simulation' |
46
|
|
|
EPS_RENDERING_JOB = 'eps' |
47
|
|
|
PDF_RENDERING_JOB = 'pdf' |
48
|
|
|
|
49
|
|
|
JOB_TYPES = ( |
50
|
|
|
(MINCUT_JOB, 'Cutset computation'), |
51
|
|
|
(TOP_EVENT_JOB, 'Top event calculation (analytical)'), |
52
|
|
|
(SIMULATION_JOB, 'Top event calculation (simulation)'), |
53
|
|
|
(EPS_RENDERING_JOB, 'EPS rendering job'), |
54
|
|
|
(PDF_RENDERING_JOB, 'PDF rendering job') |
55
|
|
|
) |
56
|
|
|
|
57
|
|
|
graph = models.ForeignKey(Graph, null=True, related_name='jobs') |
58
|
|
|
# Detect graph changes during job execution |
59
|
|
|
graph_modified = models.DateTimeField() |
60
|
|
|
secret = models.CharField( |
61
|
|
|
max_length=64, |
62
|
|
|
default=gen_uuid) # Unique secret for this job |
63
|
|
|
kind = models.CharField(max_length=127, choices=JOB_TYPES) |
64
|
|
|
created = models.DateTimeField(auto_now_add=True, editable=False) |
65
|
|
|
# Exit code for this job, NULL if pending |
66
|
|
|
exit_code = models.IntegerField(null=True) |
67
|
|
|
|
68
|
|
|
def input_data(self): |
69
|
|
|
''' Used by the API to get the input data needed for the particular job type.''' |
70
|
|
|
if self.kind in ( |
71
|
|
|
Job.MINCUT_JOB, Job.TOP_EVENT_JOB, Job.SIMULATION_JOB): |
72
|
|
|
return self.graph.to_xml(), 'application/xml' |
73
|
|
|
elif self.kind in (Job.EPS_RENDERING_JOB, Job.PDF_RENDERING_JOB): |
74
|
|
|
return self.graph.to_tikz(), 'application/text' |
75
|
|
|
assert (False) |
76
|
|
|
|
77
|
|
|
def done(self): |
78
|
|
|
return self.exit_code is not None |
79
|
|
|
|
80
|
|
|
@property |
81
|
|
|
def requires_download(self): |
82
|
|
|
""" |
83
|
|
|
Indicates if the result should be delivered directly to the frontend |
84
|
|
|
as file, or if it must be preprocessed with self.result_rendering(). |
85
|
|
|
""" |
86
|
|
|
return self.kind in [Job.EPS_RENDERING_JOB, Job.PDF_RENDERING_JOB] |
87
|
|
|
|
88
|
|
|
@property |
89
|
|
|
def result_titles(self): |
90
|
|
|
''' |
91
|
|
|
The result class knows how the titles should look like. |
92
|
|
|
''' |
93
|
|
|
if self.kind == self.TOP_EVENT_JOB: |
94
|
|
|
return Result.titles(Result.ANALYSIS_RESULT, self.graph.kind) |
95
|
|
|
elif self.kind == self.SIMULATION_JOB: |
96
|
|
|
return Result.titles(Result.SIMULATION_RESULT, self.graph.kind) |
97
|
|
|
elif self.kind == self.MINCUT_JOB: |
98
|
|
|
return Result.titles(Result.MINCUT_RESULT, self.graph.kind) |
99
|
|
|
|
100
|
|
|
def static_info(self): |
101
|
|
|
''' |
102
|
|
|
Provides a static info string for the result that is independent from frontend parsing. |
103
|
|
|
This is mainly a debugging vehicle. |
104
|
|
|
''' |
105
|
|
|
# raw_results = [str(result.to_dict()) for result in self.results.all()] |
106
|
|
|
# return "Raw result information:<br/>"+"<br/>".join(raw_results) |
107
|
|
|
|
108
|
|
|
def axis_titles(self): |
109
|
|
|
''' |
110
|
|
|
Computes labeling and axis scales for the analysis results menu. |
111
|
|
|
Descriptions of configurations values for 'xAxis' and 'yAxis' can be taken from the official Highcharts api. |
112
|
|
|
''' |
113
|
|
|
axis_titles = { |
114
|
|
|
'xAxis': { |
115
|
|
|
'min': -0.05, |
116
|
|
|
'max': 1.05, |
117
|
|
|
'title': { |
118
|
|
|
'text': None, # 'x title', |
119
|
|
|
'style': { |
120
|
|
|
'fontSize': '9px' |
121
|
|
|
} |
122
|
|
|
}, |
123
|
|
|
'tickInterval': 0.2 |
124
|
|
|
}, |
125
|
|
|
'yAxis': { |
126
|
|
|
'min': 0, |
127
|
|
|
'max': 1.0, |
128
|
|
|
'title': { |
129
|
|
|
'text': None, # 'y title', |
130
|
|
|
'style': { |
131
|
|
|
'fontSize': '9px' |
132
|
|
|
} |
133
|
|
|
}, |
134
|
|
|
'tickInterval': 1.0, |
135
|
|
|
'minorTickInterval': 1.0 / 10 |
136
|
|
|
} |
137
|
|
|
} |
138
|
|
|
|
139
|
|
|
return axis_titles |
140
|
|
|
|
141
|
|
|
@classmethod |
142
|
|
|
def exists_with_result(cls, graph, kind): |
143
|
|
|
''' |
144
|
|
|
Return an existing job object for that graph and job kind, but only |
145
|
|
|
if it was computed on the same graph data and has existing results. |
146
|
|
|
|
147
|
|
|
Theoretically, there is only one cached job left, since the new creation |
148
|
|
|
leads to deletion of old versions. We anyway prepare for the case of |
149
|
|
|
having multiple cached old results, by just using the youngest one. |
150
|
|
|
''' |
151
|
|
|
return None |
152
|
|
|
# TODO: The cached job fetching seems to fail in the API part, test again heavily and re-enable then |
153
|
|
|
# try: |
154
|
|
|
# return Job.objects.filter( |
155
|
|
|
# graph=graph, kind=kind, graph_modified=graph.modified, exit_code=0).order_by('-created')[0] |
156
|
|
|
# except: |
157
|
|
|
# return None |
158
|
|
|
|
159
|
|
|
def result_download(self): |
160
|
|
|
""" |
161
|
|
|
Returns an HttpResponse as direct file download of the result data. |
162
|
|
|
""" |
163
|
|
|
response = HttpResponse() |
164
|
|
|
response[ |
165
|
|
|
'Content-Disposition'] = 'attachment; filename=graph%u.%s' % (self.graph.pk, self.kind) |
166
|
|
|
response.content = Result.objects.exclude( |
167
|
|
|
kind=Result.GRAPH_ISSUES).get( |
168
|
|
|
job=self).binary_value |
169
|
|
|
response[ |
170
|
|
|
'Content-Type'] = 'application/pdf' if self.kind == 'pdf' else 'application/postscript' |
171
|
|
|
return response |
172
|
|
|
|
173
|
|
|
def interpret_issues(self, xml_issues): |
174
|
|
|
""" |
175
|
|
|
Interpret the incoming list of issues and convert to feasible JSON for storage. |
176
|
|
|
""" |
177
|
|
|
errors = [] |
178
|
|
|
warnings = [] |
179
|
|
|
for issue in xml_issues: |
180
|
|
|
json_issue = {'message': issue.message, |
181
|
|
|
'issueId': issue.issueId, |
182
|
|
|
'elementId': issue.elementId} |
183
|
|
|
if issue.isFatal: |
184
|
|
|
errors.append(json_issue) |
185
|
|
|
else: |
186
|
|
|
warnings.append(json_issue) |
187
|
|
|
return {'errors': errors, 'warnings': warnings} |
188
|
|
|
|
189
|
|
|
def interpret_value(self, xml_result_value, db_result): |
190
|
|
|
""" |
191
|
|
|
Interpret the incoming result value and convert it to feasible JSON for storage. |
192
|
|
|
|
193
|
|
|
Fuzzy probability values as result are given for each alpha cut. Putting |
194
|
|
|
all the different values together forms a triangular membership function. |
195
|
|
|
Crisp probabilities are just a special case of this, were the membership |
196
|
|
|
function collapses to a straight vertical line. |
197
|
|
|
|
198
|
|
|
The method determines both a list of drawable diagram coordinates, |
199
|
|
|
and the result values to be shown directly to the user. |
200
|
|
|
|
201
|
|
|
Diagram point determination: |
202
|
|
|
|
203
|
|
|
The X axis represents the unreliability value (== probability of failure), |
204
|
|
|
the Y axis the membership function probability value for the given unreliability value. |
205
|
|
|
For each alpha cut, the backend returns us the points were the upper border of the |
206
|
|
|
alphacut stripe is crossing the membership triangle. |
207
|
|
|
The lowest alphacut (0) has its upper border directly on the X axis. |
208
|
|
|
The highest alphacut has its upper border crossing the tip of the membership function. |
209
|
|
|
|
210
|
|
|
The two points were the alphacut border touches the membership function are called |
211
|
|
|
"[lower, upper]", the number of the alphacut is the "key". |
212
|
|
|
For this reason, "lower" and "upper" are used as X coordinates, |
213
|
|
|
while the key is used as "Y" coordinate. |
214
|
|
|
|
215
|
|
|
""" |
216
|
|
|
if hasattr(xml_result_value, |
217
|
|
|
'probability') and xml_result_value.probability is not None: |
218
|
|
|
points = [] |
219
|
|
|
logging.debug("Probability: " + str(xml_result_value.probability)) |
220
|
|
|
# we don't believe the delivered decomp_number |
221
|
|
|
alphacut_count = len(xml_result_value.probability.alphaCuts) |
222
|
|
|
for alpha_cut in xml_result_value.probability.alphaCuts: |
223
|
|
|
# Alphacut indexes start at zero |
224
|
|
|
y_val = alpha_cut.key + 1 / alphacut_count |
225
|
|
|
assert (0 <= y_val <= 1) |
226
|
|
|
points.append([alpha_cut.value_.lowerBound, y_val]) |
227
|
|
|
if alpha_cut.value_.upperBound != alpha_cut.value_.lowerBound: |
228
|
|
|
points.append([alpha_cut.value_.upperBound, y_val]) |
229
|
|
|
else: |
230
|
|
|
# This is the tip of the triangle. |
231
|
|
|
# If this is a crisp probability, then there is only the point above added. |
232
|
|
|
# In this case, add another fake point to draw a strisaght line. |
233
|
|
|
# points.append([alpha_cut.value_.lowerBound, 0]) |
234
|
|
|
pass |
235
|
|
|
|
236
|
|
|
# Points is now a wild collection of coordinates, were double values for the same X |
237
|
|
|
# coordinate may occur. We sort it (since the JS code likes that) and leave only the |
238
|
|
|
# largest Y values per X value. |
239
|
|
|
|
240
|
|
|
# If we have only one point, it makes no sense to draw a graph |
241
|
|
|
# TODO: Instead, we could draw a nice exponential curve for the resulting rate parameter |
242
|
|
|
# This demands some better support for feeding the frontend graph |
243
|
|
|
# rendering (Axis range etc.) |
244
|
|
|
if alphacut_count > 1: |
245
|
|
|
db_result.points = json.dumps(sorted(points)) |
246
|
|
|
|
247
|
|
|
# Compute some additional statistics for the front-end, based on |
248
|
|
|
# the gathered probabilities |
249
|
|
|
if len(points) > 0: |
250
|
|
|
db_result.minimum = min( |
251
|
|
|
points, |
252
|
|
|
key=lambda point: point[0])[0] # left triangle border position |
253
|
|
|
db_result.maximum = max( |
254
|
|
|
points, |
255
|
|
|
key=lambda point: point[0])[0] # right triangle border position |
256
|
|
|
db_result.peak = max( |
257
|
|
|
points, |
258
|
|
|
key=lambda point: point[1])[0] # triangle tip position |
259
|
|
|
|
260
|
|
|
if hasattr(xml_result_value, |
261
|
|
|
'reliability') and xml_result_value.reliability is not None: |
262
|
|
|
reliability = float(xml_result_value.reliability) |
263
|
|
|
db_result.reliability = None if math.isnan( |
264
|
|
|
reliability) else reliability |
265
|
|
|
|
266
|
|
|
if hasattr(xml_result_value, |
267
|
|
|
'mttf') and xml_result_value.mttf is not None: |
268
|
|
|
mttf = float(xml_result_value.mttf) |
269
|
|
|
db_result.mttf = None if math.isnan(mttf) else mttf |
270
|
|
|
|
271
|
|
|
if hasattr( |
272
|
|
|
xml_result_value, 'nSimulatedRounds') and xml_result_value.nSimulatedRounds is not None: |
273
|
|
|
rounds = int(xml_result_value.nSimulatedRounds) |
274
|
|
|
db_result.rounds = None if math.isnan(rounds) else rounds |
275
|
|
|
|
276
|
|
|
if hasattr(xml_result_value, |
277
|
|
|
'nFailures') and xml_result_value.nFailures is not None: |
278
|
|
|
failures = int(xml_result_value.nFailures) |
279
|
|
|
db_result.failures = None if math.isnan(failures) else failures |
280
|
|
|
|
281
|
|
|
if hasattr(xml_result_value, |
282
|
|
|
'timestamp') and xml_result_value.timestamp is not None: |
283
|
|
|
timestamp = int(xml_result_value.timestamp) |
284
|
|
|
db_result.timestamp = None if math.isnan(timestamp) else timestamp |
285
|
|
|
else: |
286
|
|
|
# All analysis results not refering to a particular timestamp refer |
287
|
|
|
# to the configured missionTime |
288
|
|
|
top_node = db_result.graph.top_node() |
289
|
|
|
if top_node: |
290
|
|
|
timestamp = top_node.get_property('missionTime') |
291
|
|
|
db_result.timestamp = None if math.isnan( |
292
|
|
|
timestamp) else timestamp |
293
|
|
|
|
294
|
|
|
def parse_result(self, data): |
295
|
|
|
""" |
296
|
|
|
Parses the result data and saves the content to the database, |
297
|
|
|
in relation to this job. |
298
|
|
|
""" |
299
|
|
|
if self.requires_download: |
300
|
|
|
if self.kind == self.PDF_RENDERING_JOB: |
301
|
|
|
old_results = self.results.filter( |
302
|
|
|
graph=self.graph, |
303
|
|
|
kind=Result.PDF_RESULT) |
304
|
|
|
old_results.delete() |
305
|
|
|
db_result = Result( |
306
|
|
|
graph=self.graph, |
307
|
|
|
job=self, |
308
|
|
|
kind=Result.PDF_RESULT) |
309
|
|
|
elif self.kind == self.EPS_RENDERING_JOB: |
310
|
|
|
old_results = self.results.filter( |
311
|
|
|
graph=self.graph, |
312
|
|
|
kind=Result.EPS_RESULT) |
313
|
|
|
old_results.delete() |
314
|
|
|
db_result = Result( |
315
|
|
|
graph=self.graph, |
316
|
|
|
job=self, |
317
|
|
|
kind=Result.EPS_RESULT) |
318
|
|
|
db_result.binary_value = data |
|
|
|
|
319
|
|
|
db_result.save() |
320
|
|
|
return |
321
|
|
|
|
322
|
|
|
# Ok, it is not binary, it is true XML result data |
323
|
|
|
print str(data) |
324
|
|
|
logger.debug( |
325
|
|
|
"Parsing backend result XML into database: \n" + |
326
|
|
|
str(data)) |
327
|
|
|
doc = xml_backend.CreateFromDocument(str(data)) |
328
|
|
|
|
329
|
|
|
# Delete old graph issues from a former analysis run |
330
|
|
|
self.graph.delete_results(kind=Result.GRAPH_ISSUES) |
331
|
|
|
|
332
|
|
|
if hasattr(doc, 'issue'): |
333
|
|
|
# Result-independent issues (for the whole graph, and not per configuration), |
334
|
|
|
# are saved as special kind of result |
335
|
|
|
db_result = Result( |
336
|
|
|
graph=self.graph, |
337
|
|
|
job=self, |
338
|
|
|
kind=Result.GRAPH_ISSUES) |
339
|
|
|
db_result.issues = json.dumps(self.interpret_issues(doc.issue)) |
340
|
|
|
db_result.save() |
341
|
|
|
|
342
|
|
|
conf_id_mappings = {} # XML conf ID's to DB conf ID's |
343
|
|
|
|
344
|
|
|
if hasattr(doc, 'configuration'): |
345
|
|
|
# Throw away existing configurations information |
346
|
|
|
self.graph.delete_configurations() |
347
|
|
|
# walk through all the configurations determined by the backend, as shown in the XML |
348
|
|
|
# Node configurations can be bulk-inserted, since nobody links to them |
349
|
|
|
# The expensive looped Configuration object creation cannot be bulk-inserted, |
350
|
|
|
# since we need their pk's in the NodeCOnfiguration object |
351
|
|
|
db_nodeconfs = [] |
352
|
|
|
for configuration in doc.configuration: |
353
|
|
|
db_conf = Configuration( |
354
|
|
|
graph=self.graph, |
355
|
|
|
costs=configuration.costs if hasattr( |
356
|
|
|
configuration, |
357
|
|
|
'costs') else None) |
358
|
|
|
db_conf.save() |
359
|
|
|
conf_id_mappings[configuration.id] = db_conf |
360
|
|
|
logger.debug( |
361
|
|
|
"Storing DB configuration %u for XML configuration %s in graph %u" % |
362
|
|
|
(db_conf.pk, configuration.id, self.graph.pk)) |
363
|
|
|
# Analyze node configuration choices in this configuration |
364
|
|
|
assert( |
365
|
|
|
hasattr( |
366
|
|
|
configuration, |
367
|
|
|
'choice')) # according to XSD, this must be given |
368
|
|
|
for choice in configuration.choice: |
369
|
|
|
element = choice.value_ |
370
|
|
|
json_choice = {} |
371
|
|
|
if isinstance(element, FeatureChoice): |
372
|
|
|
json_choice['type'] = 'FeatureChoice' |
373
|
|
|
json_choice['featureId'] = element.featureId |
374
|
|
|
elif isinstance(element, InclusionChoice): |
375
|
|
|
json_choice['type'] = 'InclusionChoice' |
376
|
|
|
json_choice['included'] = element.included |
377
|
|
|
elif isinstance(element, RedundancyChoice): |
378
|
|
|
json_choice['type'] = 'RedundancyChoice' |
379
|
|
|
json_choice['n'] = int(element.n) |
380
|
|
|
else: |
381
|
|
|
raise ValueError('Unknown choice %s' % element) |
382
|
|
|
db_node = Node.objects.get( |
383
|
|
|
client_id=choice.key, |
384
|
|
|
graph=self.graph) |
385
|
|
|
db_nodeconf = NodeConfiguration( |
386
|
|
|
node=db_node, |
387
|
|
|
configuration=db_conf, |
388
|
|
|
setting=json.dumps(json_choice)) |
389
|
|
|
db_nodeconfs.append(db_nodeconf) |
390
|
|
|
logger.debug("Performing bulk insert of node configurations") |
391
|
|
|
NodeConfiguration.objects.bulk_create(db_nodeconfs) |
392
|
|
|
|
393
|
|
|
if hasattr(doc, 'result'): |
394
|
|
|
# Remove earlier results of the same kind |
395
|
|
|
if self.kind == self.TOP_EVENT_JOB: |
396
|
|
|
self.graph.delete_results(kind=Result.ANALYSIS_RESULT) |
397
|
|
|
elif self.kind == self.SIMULATION_JOB: |
398
|
|
|
self.graph.delete_results(kind=Result.SIMULATION_RESULT) |
399
|
|
|
elif self.kind == self.MINCUT_JOB: |
400
|
|
|
self.graph.delete_results(kind=Result.MINCUT_RESULT) |
401
|
|
|
db_results = [] |
402
|
|
|
for result in doc.result: |
403
|
|
|
assert(int(result.modelId) == self.graph.pk) |
404
|
|
|
db_result = Result(graph=self.graph, job=self) |
405
|
|
|
if result.configId in conf_id_mappings: |
406
|
|
|
db_result.configuration = conf_id_mappings[result.configId] |
407
|
|
|
if isinstance(result, AnalysisResult): |
408
|
|
|
db_result.kind = Result.ANALYSIS_RESULT |
409
|
|
|
elif isinstance(result, MincutResult): |
410
|
|
|
db_result.kind = Result.MINCUT_RESULT |
411
|
|
|
elif isinstance(result, SimulationResult): |
412
|
|
|
db_result.kind = Result.SIMULATION_RESULT |
413
|
|
|
self.interpret_value(result, db_result) |
414
|
|
|
if result.issue: |
415
|
|
|
db_result.issues = json.dumps( |
416
|
|
|
self.interpret_issues( |
417
|
|
|
result.issue)) |
418
|
|
|
db_results.append(db_result) |
419
|
|
|
logger.debug("Performing bulk insert of parsed results") |
420
|
|
|
Result.objects.bulk_create(db_results) |
421
|
|
|
|
422
|
|
|
|
423
|
|
|
@receiver(post_save, sender=Job) |
424
|
|
|
def job_post_save(sender, instance, created, **kwargs): |
425
|
|
|
''' Informs notification listeners. |
426
|
|
|
The payload contains the job URL prefix with a secret, |
427
|
|
|
which allows the listener to perform according actions. |
428
|
|
|
''' |
429
|
|
|
if created: |
430
|
|
|
# The only way to determine our own hostname + port number at runtime in Django |
431
|
|
|
# is from an HttpRequest object, which we do not have here. |
432
|
|
|
# Option 1 is to fetch this information from the HttpRequest and somehow move it here. |
433
|
|
|
# This works nice as long as LiveServerTestCase is not used, since the Django Test |
434
|
|
|
# Client still accesses the http://testserver URL and not the live server URL. |
435
|
|
|
# We therefore take the static approach with a setting here, which is overriden |
436
|
|
|
# by the test suite run accordingly |
437
|
|
|
|
438
|
|
|
# TODO: Use reverse() for this |
439
|
|
|
job_url = settings.SERVER + '/api/back/jobs/' + instance.secret |
440
|
|
|
|
441
|
|
|
try: |
442
|
|
|
# The proxy is instantiated here, since the connection should go |
443
|
|
|
# away when finished |
444
|
|
|
s = xmlrpclib.ServerProxy(settings.BACKEND_DAEMON) |
445
|
|
|
logger.debug( |
446
|
|
|
"Triggering %s job available through url %s" % |
447
|
|
|
(instance.kind, job_url)) |
448
|
|
|
s.start_job(instance.kind, job_url) |
449
|
|
|
except Exception as e: |
450
|
|
|
mail_managers( |
451
|
|
|
"Exception on backend call - " + |
452
|
|
|
settings.BACKEND_DAEMON, |
453
|
|
|
str(e)) |
454
|
|
|
raise HttpResponseServerErrorAnswer( |
455
|
|
|
"Sorry, we seem to have a problem with our ORE backend. The admins are informed, thanks for the patience.") |
456
|
|
|
|