1 | <?php |
||
24 | class Distance extends AbstractGeotools implements DistanceInterface |
||
25 | { |
||
26 | /** |
||
27 | * The user unit. |
||
28 | * |
||
29 | * @var string |
||
30 | */ |
||
31 | protected $unit; |
||
32 | |||
33 | |||
34 | /** |
||
35 | * {@inheritDoc} |
||
36 | */ |
||
37 | 50 | public function setFrom(CoordinateInterface $from) |
|
38 | { |
||
39 | 50 | $this->from = $from; |
|
40 | |||
41 | 50 | return $this; |
|
42 | } |
||
43 | |||
44 | /** |
||
45 | * {@inheritDoc} |
||
46 | */ |
||
47 | 1 | public function getFrom() |
|
51 | |||
52 | /** |
||
53 | * {@inheritDoc} |
||
54 | */ |
||
55 | 50 | public function setTo(CoordinateInterface $to) |
|
56 | { |
||
57 | 50 | $this->to = $to; |
|
58 | |||
59 | 50 | return $this; |
|
60 | } |
||
61 | |||
62 | /** |
||
63 | * {@inheritDoc} |
||
64 | */ |
||
65 | 1 | public function getTo() |
|
69 | |||
70 | /** |
||
71 | * {@inheritDoc} |
||
72 | */ |
||
73 | 38 | public function in($unit) |
|
74 | { |
||
75 | 38 | $this->unit = $unit; |
|
76 | |||
77 | 38 | return $this; |
|
78 | } |
||
79 | |||
80 | /** |
||
81 | * Returns the approximate flat distance between two coordinates |
||
82 | * using Pythagoras’ theorem which is not very accurate. |
||
83 | * @see http://en.wikipedia.org/wiki/Pythagorean_theorem |
||
84 | * @see http://en.wikipedia.org/wiki/Equirectangular_projection |
||
85 | * |
||
86 | * @return double The distance in meters |
||
87 | */ |
||
88 | 18 | public function flat() |
|
89 | { |
||
90 | 18 | Ellipsoid::checkCoordinatesEllipsoid($this->from, $this->to); |
|
91 | |||
92 | 18 | $latA = deg2rad($this->from->getLatitude()); |
|
93 | 18 | $lngA = deg2rad($this->from->getLongitude()); |
|
94 | 18 | $latB = deg2rad($this->to->getLatitude()); |
|
95 | 18 | $lngB = deg2rad($this->to->getLongitude()); |
|
96 | |||
97 | 18 | $x = ($lngB - $lngA) * cos(($latA + $latB) / 2); |
|
98 | 18 | $y = $latB - $latA; |
|
99 | |||
100 | 18 | $d = sqrt(($x * $x) + ($y * $y)) * $this->from->getEllipsoid()->getA(); |
|
101 | |||
102 | 18 | return $this->convertToUserUnit($d); |
|
103 | } |
||
104 | |||
105 | /** |
||
106 | * Returns the approximate distance between two coordinates |
||
107 | * using the spherical trigonometry called Great Circle Distance. |
||
108 | * @see http://www.ga.gov.au/earth-monitoring/geodesy/geodetic-techniques/distance-calculation-algorithms.html#circle |
||
109 | * @see http://en.wikipedia.org/wiki/Cosine_law |
||
110 | * |
||
111 | * @return double The distance in meters |
||
112 | */ |
||
113 | 10 | public function greatCircle() |
|
114 | { |
||
115 | 10 | Ellipsoid::checkCoordinatesEllipsoid($this->from, $this->to); |
|
116 | |||
117 | 10 | $latA = deg2rad($this->from->getLatitude()); |
|
118 | 10 | $lngA = deg2rad($this->from->getLongitude()); |
|
119 | 10 | $latB = deg2rad($this->to->getLatitude()); |
|
120 | 10 | $lngB = deg2rad($this->to->getLongitude()); |
|
121 | |||
122 | 10 | $degrees = acos(sin($latA) * sin($latB) + cos($latA) * cos($latB) * cos($lngB - $lngA)); |
|
123 | |||
124 | 10 | return $this->convertToUserUnit($degrees * $this->from->getEllipsoid()->getA()); |
|
125 | } |
||
126 | |||
127 | /** |
||
128 | * Returns the approximate sea level great circle (Earth) distance between |
||
129 | * two coordinates using the Haversine formula which is accurate to around 0.3%. |
||
130 | * @see http://www.movable-type.co.uk/scripts/latlong.html |
||
131 | * |
||
132 | * @return double The distance in meters |
||
133 | */ |
||
134 | 18 | public function haversine() |
|
135 | { |
||
136 | 18 | Ellipsoid::checkCoordinatesEllipsoid($this->from, $this->to); |
|
137 | |||
138 | 18 | $latA = deg2rad($this->from->getLatitude()); |
|
139 | 18 | $lngA = deg2rad($this->from->getLongitude()); |
|
140 | 18 | $latB = deg2rad($this->to->getLatitude()); |
|
141 | 18 | $lngB = deg2rad($this->to->getLongitude()); |
|
142 | |||
143 | 18 | $dLat = $latB - $latA; |
|
144 | 18 | $dLon = $lngB - $lngA; |
|
145 | |||
146 | 18 | $a = sin($dLat / 2) * sin($dLat / 2) + cos($latA) * cos($latB) * sin($dLon / 2) * sin($dLon / 2); |
|
147 | 18 | $c = 2 * atan2(sqrt($a), sqrt(1 - $a)); |
|
148 | |||
149 | 18 | return $this->convertToUserUnit($this->from->getEllipsoid()->getA() * $c); |
|
150 | } |
||
151 | |||
152 | /** |
||
153 | * Returns geodetic distance between between two coordinates using Vincenty inverse |
||
154 | * formula for ellipsoids which is accurate to within 0.5mm. |
||
155 | * @see http://www.movable-type.co.uk/scripts/latlong-vincenty.html |
||
156 | * |
||
157 | * @return double The distance in meters |
||
158 | */ |
||
159 | 18 | public function vincenty() |
|
160 | { |
||
161 | 18 | Ellipsoid::checkCoordinatesEllipsoid($this->from, $this->to); |
|
162 | |||
163 | 18 | $a = $this->from->getEllipsoid()->getA(); |
|
164 | 18 | $b = $this->from->getEllipsoid()->getB(); |
|
165 | 18 | $f = 1 / $this->from->getEllipsoid()->getInvF(); |
|
166 | |||
167 | 18 | $lL = deg2rad($this->to->getLongitude() - $this->from->getLongitude()); |
|
168 | 18 | $u1 = atan((1 - $f) * tan(deg2rad($this->from->getLatitude()))); |
|
169 | 18 | $u2 = atan((1 - $f) * tan(deg2rad($this->to->getLatitude()))); |
|
170 | |||
171 | 18 | $sinU1 = sin($u1); |
|
172 | 18 | $cosU1 = cos($u1); |
|
173 | 18 | $sinU2 = sin($u2); |
|
174 | 18 | $cosU2 = cos($u2); |
|
175 | |||
176 | 18 | $lambda = $lL; |
|
177 | 18 | $iterLimit = 100; |
|
178 | |||
179 | do { |
||
180 | 18 | $sinLambda = sin($lambda); |
|
181 | 18 | $cosLambda = cos($lambda); |
|
182 | 18 | $sinSigma = sqrt(($cosU2 * $sinLambda) * ($cosU2 * $sinLambda) + |
|
183 | 18 | ($cosU1 * $sinU2 - $sinU1 * $cosU2 * $cosLambda) * ($cosU1 * $sinU2 - $sinU1 * $cosU2 * $cosLambda)); |
|
184 | |||
185 | 18 | if (0.0 === $sinSigma) { |
|
186 | 1 | return 0.0; // co-incident points |
|
187 | } |
||
188 | |||
189 | 17 | $cosSigma = $sinU1 * $sinU2 + $cosU1 * $cosU2 * $cosLambda; |
|
190 | 17 | $sigma = atan2($sinSigma, $cosSigma); |
|
191 | 17 | $sinAlpha = $cosU1 * $cosU2 * $sinLambda / $sinSigma; |
|
192 | 17 | $cosSqAlpha = 1 - $sinAlpha * $sinAlpha; |
|
193 | 17 | if ($cosSqAlpha != 0.0) { |
|
194 | 17 | $cos2SigmaM = $cosSigma - 2 * $sinU1 * $sinU2 / $cosSqAlpha; |
|
195 | 17 | } |
|
196 | else { |
||
197 | $cos2SigmaM = 0.0; |
||
198 | } |
||
199 | 17 | $cC = $f / 16 * $cosSqAlpha * (4 + $f * (4 - 3 * $cosSqAlpha)); |
|
200 | 17 | $lambdaP = $lambda; |
|
201 | 17 | $lambda = $lL + (1 - $cC) * $f * $sinAlpha * ($sigma + $cC * $sinSigma * |
|
202 | 17 | ($cos2SigmaM + $cC * $cosSigma * (-1 + 2 * $cos2SigmaM * $cos2SigmaM))); |
|
203 | 17 | } while (abs($lambda - $lambdaP) > 1e-12 && --$iterLimit > 0); |
|
204 | |||
205 | // @codeCoverageIgnoreStart |
||
206 | if (0 === $iterLimit) { |
||
207 | throw new NotConvergingException('Vincenty formula failed to converge !'); |
||
208 | } |
||
209 | // @codeCoverageIgnoreEnd |
||
210 | |||
211 | 17 | $uSq = $cosSqAlpha * ($a * $a - $b * $b) / ($b * $b); |
|
212 | 17 | $aA = 1 + $uSq / 16384 * (4096 + $uSq * (-768 + $uSq * (320 - 175 * $uSq))); |
|
213 | 17 | $bB = $uSq / 1024 * (256 + $uSq * (-128 + $uSq * (74 - 47 * $uSq))); |
|
214 | 17 | $deltaSigma = $bB * $sinSigma * ($cos2SigmaM + $bB / 4 * ($cosSigma * (-1 + 2 * $cos2SigmaM * $cos2SigmaM) - |
|
215 | 17 | $bB / 6 * $cos2SigmaM * (-3 + 4 * $sinSigma * $sinSigma) * (-3 + 4 * $cos2SigmaM * $cos2SigmaM))); |
|
216 | 17 | $s = $b * $aA * ($sigma - $deltaSigma); |
|
217 | |||
218 | 17 | return $this->convertToUserUnit($s); |
|
219 | } |
||
220 | |||
221 | /** |
||
222 | * Converts results in meters to user's unit (if any). |
||
223 | * The default returned value is in meters. |
||
224 | * |
||
225 | * @param double $meters |
||
226 | * |
||
227 | * @return double |
||
228 | */ |
||
229 | 47 | protected function convertToUserUnit($meters) |
|
242 | } |
||
243 |