1
|
|
|
<?php |
2
|
|
|
|
3
|
|
|
/* |
4
|
|
|
* This file is part of the Geotools library. |
5
|
|
|
* |
6
|
|
|
* (c) Antoine Corcy <[email protected]> |
7
|
|
|
* |
8
|
|
|
* For the full copyright and license information, please view the LICENSE |
9
|
|
|
* file that was distributed with this source code. |
10
|
|
|
*/ |
11
|
|
|
|
12
|
|
|
namespace League\Geotools\Distance; |
13
|
|
|
|
14
|
|
|
use League\Geotools\Exception\NotConvergingException; |
15
|
|
|
use League\Geotools\AbstractGeotools; |
16
|
|
|
use League\Geotools\Coordinate\CoordinateInterface; |
17
|
|
|
use League\Geotools\Coordinate\Ellipsoid; |
18
|
|
|
|
19
|
|
|
/** |
20
|
|
|
* Distance class |
21
|
|
|
* |
22
|
|
|
* @author Antoine Corcy <[email protected]> |
23
|
|
|
*/ |
24
|
|
|
class Distance extends AbstractGeotools implements DistanceInterface |
25
|
|
|
{ |
26
|
|
|
/** |
27
|
|
|
* The user unit. |
28
|
|
|
* |
29
|
|
|
* @var string |
30
|
|
|
*/ |
31
|
|
|
protected $unit; |
32
|
|
|
|
33
|
|
|
|
34
|
|
|
/** |
35
|
|
|
* {@inheritDoc} |
36
|
|
|
*/ |
37
|
50 |
|
public function setFrom(CoordinateInterface $from) |
38
|
|
|
{ |
39
|
50 |
|
$this->from = $from; |
40
|
|
|
|
41
|
50 |
|
return $this; |
42
|
|
|
} |
43
|
|
|
|
44
|
|
|
/** |
45
|
|
|
* {@inheritDoc} |
46
|
|
|
*/ |
47
|
1 |
|
public function getFrom() |
48
|
|
|
{ |
49
|
1 |
|
return $this->from; |
50
|
|
|
} |
51
|
|
|
|
52
|
|
|
/** |
53
|
|
|
* {@inheritDoc} |
54
|
|
|
*/ |
55
|
50 |
|
public function setTo(CoordinateInterface $to) |
56
|
|
|
{ |
57
|
50 |
|
$this->to = $to; |
58
|
|
|
|
59
|
50 |
|
return $this; |
60
|
|
|
} |
61
|
|
|
|
62
|
|
|
/** |
63
|
|
|
* {@inheritDoc} |
64
|
|
|
*/ |
65
|
1 |
|
public function getTo() |
66
|
|
|
{ |
67
|
1 |
|
return $this->to; |
68
|
|
|
} |
69
|
|
|
|
70
|
|
|
/** |
71
|
|
|
* {@inheritDoc} |
72
|
|
|
*/ |
73
|
38 |
|
public function in($unit) |
74
|
|
|
{ |
75
|
38 |
|
$this->unit = $unit; |
76
|
|
|
|
77
|
38 |
|
return $this; |
78
|
|
|
} |
79
|
|
|
|
80
|
|
|
/** |
81
|
|
|
* Returns the approximate flat distance between two coordinates |
82
|
|
|
* using Pythagoras’ theorem which is not very accurate. |
83
|
|
|
* @see http://en.wikipedia.org/wiki/Pythagorean_theorem |
84
|
|
|
* @see http://en.wikipedia.org/wiki/Equirectangular_projection |
85
|
|
|
* |
86
|
|
|
* @return double The distance in meters |
87
|
|
|
*/ |
88
|
18 |
|
public function flat() |
89
|
|
|
{ |
90
|
18 |
|
Ellipsoid::checkCoordinatesEllipsoid($this->from, $this->to); |
91
|
|
|
|
92
|
18 |
|
$latA = deg2rad($this->from->getLatitude()); |
93
|
18 |
|
$lngA = deg2rad($this->from->getLongitude()); |
94
|
18 |
|
$latB = deg2rad($this->to->getLatitude()); |
95
|
18 |
|
$lngB = deg2rad($this->to->getLongitude()); |
96
|
|
|
|
97
|
18 |
|
$x = ($lngB - $lngA) * cos(($latA + $latB) / 2); |
98
|
18 |
|
$y = $latB - $latA; |
99
|
|
|
|
100
|
18 |
|
$d = sqrt(($x * $x) + ($y * $y)) * $this->from->getEllipsoid()->getA(); |
101
|
|
|
|
102
|
18 |
|
return $this->convertToUserUnit($d); |
103
|
|
|
} |
104
|
|
|
|
105
|
|
|
/** |
106
|
|
|
* Returns the approximate distance between two coordinates |
107
|
|
|
* using the spherical trigonometry called Great Circle Distance. |
108
|
|
|
* @see http://www.ga.gov.au/earth-monitoring/geodesy/geodetic-techniques/distance-calculation-algorithms.html#circle |
109
|
|
|
* @see http://en.wikipedia.org/wiki/Cosine_law |
110
|
|
|
* |
111
|
|
|
* @return double The distance in meters |
112
|
|
|
*/ |
113
|
10 |
|
public function greatCircle() |
114
|
|
|
{ |
115
|
10 |
|
Ellipsoid::checkCoordinatesEllipsoid($this->from, $this->to); |
116
|
|
|
|
117
|
10 |
|
$latA = deg2rad($this->from->getLatitude()); |
118
|
10 |
|
$lngA = deg2rad($this->from->getLongitude()); |
119
|
10 |
|
$latB = deg2rad($this->to->getLatitude()); |
120
|
10 |
|
$lngB = deg2rad($this->to->getLongitude()); |
121
|
|
|
|
122
|
10 |
|
$degrees = acos(sin($latA) * sin($latB) + cos($latA) * cos($latB) * cos($lngB - $lngA)); |
123
|
|
|
|
124
|
10 |
|
return $this->convertToUserUnit($degrees * $this->from->getEllipsoid()->getA()); |
125
|
|
|
} |
126
|
|
|
|
127
|
|
|
/** |
128
|
|
|
* Returns the approximate sea level great circle (Earth) distance between |
129
|
|
|
* two coordinates using the Haversine formula which is accurate to around 0.3%. |
130
|
|
|
* @see http://www.movable-type.co.uk/scripts/latlong.html |
131
|
|
|
* |
132
|
|
|
* @return double The distance in meters |
133
|
|
|
*/ |
134
|
18 |
|
public function haversine() |
135
|
|
|
{ |
136
|
18 |
|
Ellipsoid::checkCoordinatesEllipsoid($this->from, $this->to); |
137
|
|
|
|
138
|
18 |
|
$latA = deg2rad($this->from->getLatitude()); |
139
|
18 |
|
$lngA = deg2rad($this->from->getLongitude()); |
140
|
18 |
|
$latB = deg2rad($this->to->getLatitude()); |
141
|
18 |
|
$lngB = deg2rad($this->to->getLongitude()); |
142
|
|
|
|
143
|
18 |
|
$dLat = $latB - $latA; |
144
|
18 |
|
$dLon = $lngB - $lngA; |
145
|
|
|
|
146
|
18 |
|
$a = sin($dLat / 2) * sin($dLat / 2) + cos($latA) * cos($latB) * sin($dLon / 2) * sin($dLon / 2); |
147
|
18 |
|
$c = 2 * atan2(sqrt($a), sqrt(1 - $a)); |
148
|
|
|
|
149
|
18 |
|
return $this->convertToUserUnit($this->from->getEllipsoid()->getA() * $c); |
150
|
|
|
} |
151
|
|
|
|
152
|
|
|
/** |
153
|
|
|
* Returns geodetic distance between between two coordinates using Vincenty inverse |
154
|
|
|
* formula for ellipsoids which is accurate to within 0.5mm. |
155
|
|
|
* @see http://www.movable-type.co.uk/scripts/latlong-vincenty.html |
156
|
|
|
* |
157
|
|
|
* @return double The distance in meters |
158
|
|
|
*/ |
159
|
18 |
|
public function vincenty() |
160
|
|
|
{ |
161
|
18 |
|
Ellipsoid::checkCoordinatesEllipsoid($this->from, $this->to); |
162
|
|
|
|
163
|
18 |
|
$a = $this->from->getEllipsoid()->getA(); |
164
|
18 |
|
$b = $this->from->getEllipsoid()->getB(); |
165
|
18 |
|
$f = 1 / $this->from->getEllipsoid()->getInvF(); |
166
|
|
|
|
167
|
18 |
|
$lL = deg2rad($this->to->getLongitude() - $this->from->getLongitude()); |
168
|
18 |
|
$u1 = atan((1 - $f) * tan(deg2rad($this->from->getLatitude()))); |
169
|
18 |
|
$u2 = atan((1 - $f) * tan(deg2rad($this->to->getLatitude()))); |
170
|
|
|
|
171
|
18 |
|
$sinU1 = sin($u1); |
172
|
18 |
|
$cosU1 = cos($u1); |
173
|
18 |
|
$sinU2 = sin($u2); |
174
|
18 |
|
$cosU2 = cos($u2); |
175
|
|
|
|
176
|
18 |
|
$lambda = $lL; |
177
|
18 |
|
$iterLimit = 100; |
178
|
|
|
|
179
|
|
|
do { |
180
|
18 |
|
$sinLambda = sin($lambda); |
181
|
18 |
|
$cosLambda = cos($lambda); |
182
|
18 |
|
$sinSigma = sqrt(($cosU2 * $sinLambda) * ($cosU2 * $sinLambda) + |
183
|
18 |
|
($cosU1 * $sinU2 - $sinU1 * $cosU2 * $cosLambda) * ($cosU1 * $sinU2 - $sinU1 * $cosU2 * $cosLambda)); |
184
|
|
|
|
185
|
18 |
|
if (0.0 === $sinSigma) { |
186
|
1 |
|
return 0.0; // co-incident points |
187
|
|
|
} |
188
|
|
|
|
189
|
17 |
|
$cosSigma = $sinU1 * $sinU2 + $cosU1 * $cosU2 * $cosLambda; |
190
|
17 |
|
$sigma = atan2($sinSigma, $cosSigma); |
191
|
17 |
|
$sinAlpha = $cosU1 * $cosU2 * $sinLambda / $sinSigma; |
192
|
17 |
|
$cosSqAlpha = 1 - $sinAlpha * $sinAlpha; |
193
|
17 |
|
if ($cosSqAlpha != 0.0) { |
194
|
17 |
|
$cos2SigmaM = $cosSigma - 2 * $sinU1 * $sinU2 / $cosSqAlpha; |
195
|
|
|
} |
196
|
|
|
else { |
197
|
|
|
$cos2SigmaM = 0.0; |
198
|
|
|
} |
199
|
17 |
|
$cC = $f / 16 * $cosSqAlpha * (4 + $f * (4 - 3 * $cosSqAlpha)); |
200
|
17 |
|
$lambdaP = $lambda; |
201
|
17 |
|
$lambda = $lL + (1 - $cC) * $f * $sinAlpha * ($sigma + $cC * $sinSigma * |
202
|
17 |
|
($cos2SigmaM + $cC * $cosSigma * (-1 + 2 * $cos2SigmaM * $cos2SigmaM))); |
203
|
17 |
|
} while (abs($lambda - $lambdaP) > 1e-12 && --$iterLimit > 0); |
204
|
|
|
|
205
|
|
|
// @codeCoverageIgnoreStart |
206
|
|
|
if (0 === $iterLimit) { |
207
|
|
|
throw new NotConvergingException('Vincenty formula failed to converge !'); |
208
|
|
|
} |
209
|
|
|
// @codeCoverageIgnoreEnd |
210
|
|
|
|
211
|
17 |
|
$uSq = $cosSqAlpha * ($a * $a - $b * $b) / ($b * $b); |
212
|
17 |
|
$aA = 1 + $uSq / 16384 * (4096 + $uSq * (-768 + $uSq * (320 - 175 * $uSq))); |
213
|
17 |
|
$bB = $uSq / 1024 * (256 + $uSq * (-128 + $uSq * (74 - 47 * $uSq))); |
214
|
17 |
|
$deltaSigma = $bB * $sinSigma * ($cos2SigmaM + $bB / 4 * ($cosSigma * (-1 + 2 * $cos2SigmaM * $cos2SigmaM) - |
215
|
17 |
|
$bB / 6 * $cos2SigmaM * (-3 + 4 * $sinSigma * $sinSigma) * (-3 + 4 * $cos2SigmaM * $cos2SigmaM))); |
216
|
17 |
|
$s = $b * $aA * ($sigma - $deltaSigma); |
217
|
|
|
|
218
|
17 |
|
return $this->convertToUserUnit($s); |
219
|
|
|
} |
220
|
|
|
|
221
|
|
|
/** |
222
|
|
|
* Converts results in meters to user's unit (if any). |
223
|
|
|
* The default returned value is in meters. |
224
|
|
|
* |
225
|
|
|
* @param double $meters |
226
|
|
|
* |
227
|
|
|
* @return double |
228
|
|
|
*/ |
229
|
47 |
|
protected function convertToUserUnit($meters) |
230
|
|
|
{ |
231
|
47 |
|
switch ($this->unit) { |
232
|
47 |
|
case AbstractGeotools::KILOMETER_UNIT: |
233
|
21 |
|
return $meters / 1000; |
234
|
42 |
|
case AbstractGeotools::MILE_UNIT: |
235
|
24 |
|
return $meters / AbstractGeotools::METERS_PER_MILE; |
236
|
34 |
|
case AbstractGeotools::FOOT_UNIT: |
237
|
23 |
|
return $meters / AbstractGeotools::FEET_PER_METER; |
238
|
|
|
default: |
239
|
27 |
|
return $meters; |
240
|
|
|
} |
241
|
|
|
} |
242
|
|
|
} |
243
|
|
|
|