Conditions | 1 |
Total Lines | 89 |
Code Lines | 78 |
Lines | 0 |
Ratio | 0 % |
Changes | 0 |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
1 | """Web server Tableau uses to run Python scripts. |
||
16 | def setup_package(): |
||
17 | def read(fname): |
||
18 | return open(os.path.join(os.path.dirname(__file__), fname)).read() |
||
19 | |||
20 | setup( |
||
21 | name="tabpy", |
||
22 | version=read("tabpy/VERSION"), |
||
23 | description=DOCLINES[0], |
||
24 | long_description="\n".join(DOCLINES[1:]) + "\n" + read("CHANGELOG"), |
||
25 | long_description_content_type="text/markdown", |
||
26 | url="https://github.com/tableau/TabPy", |
||
27 | author="Tableau", |
||
28 | author_email="[email protected]", |
||
29 | maintainer="Tableau", |
||
30 | maintainer_email="[email protected]", |
||
31 | download_url="https://pypi.org/project/tabpy", |
||
32 | project_urls={ |
||
33 | "Bug Tracker": "https://github.com/tableau/TabPy/issues", |
||
34 | "Documentation": "https://tableau.github.io/TabPy/", |
||
35 | "Source Code": "https://github.com/tableau/TabPy", |
||
36 | }, |
||
37 | classifiers=[ |
||
38 | "Development Status :: 5 - Production/Stable", |
||
39 | "Intended Audience :: Developers", |
||
40 | "Intended Audience :: Science/Research", |
||
41 | "License :: OSI Approved :: MIT License", |
||
42 | "Programming Language :: Python :: 3.9", |
||
43 | "Programming Language :: Python :: 3.10", |
||
44 | "Programming Language :: Python :: 3.11", |
||
45 | "Programming Language :: Python :: 3.12", |
||
46 | "Topic :: Scientific/Engineering", |
||
47 | "Topic :: Scientific/Engineering :: Information Analysis", |
||
48 | "Operating System :: Microsoft :: Windows", |
||
49 | "Operating System :: POSIX", |
||
50 | "Operating System :: Unix", |
||
51 | "Operating System :: MacOS", |
||
52 | ], |
||
53 | platforms=["Windows", "Linux", "Mac OS-X", "Unix"], |
||
54 | keywords=["tabpy tableau"], |
||
55 | packages=find_packages(exclude=["docs", "misc"]), |
||
56 | package_data={ |
||
57 | "tabpy": [ |
||
58 | "VERSION", |
||
59 | "tabpy_server/state.ini.template", |
||
60 | "tabpy_server/static/*", |
||
61 | "tabpy_server/common/default.conf", |
||
62 | ] |
||
63 | }, |
||
64 | python_requires=">=3.7", |
||
65 | license="MIT", |
||
66 | # Note: many of these required packages are included in base python |
||
67 | # but are listed here because different linux distros use custom |
||
68 | # python installations. And users can remove packages at any point |
||
69 | install_requires=[ |
||
70 | "cloudpickle", |
||
71 | "configparser", |
||
72 | "coverage", |
||
73 | "coveralls", |
||
74 | "docopt", |
||
75 | "future", |
||
76 | "genson", |
||
77 | "hypothesis", |
||
78 | "jsonschema", |
||
79 | "mock", |
||
80 | "nltk", |
||
81 | "numpy", |
||
82 | "pandas", |
||
83 | "pyopenssl", |
||
84 | "pytest", |
||
85 | "pytest-cov", |
||
86 | "requests", |
||
87 | "scipy", |
||
88 | "simplejson", |
||
89 | "scikit-learn", |
||
90 | "textblob", |
||
91 | "tornado", |
||
92 | "twisted", |
||
93 | "urllib3", |
||
94 | "pyarrow", |
||
95 | ], |
||
96 | entry_points={ |
||
97 | "console_scripts": [ |
||
98 | "tabpy=tabpy.tabpy:main", |
||
99 | "tabpy-deploy-models=tabpy.models.deploy_models:main", |
||
100 | "tabpy-user=tabpy.utils.tabpy_user:main", |
||
101 | ], |
||
102 | }, |
||
103 | setup_requires=["pytest-runner"], |
||
104 | test_suite="pytest", |
||
105 | ) |
||
110 |